SUPPORT THE WORK

GetWiki

Colonization of Mars

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
Colonization of Mars
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{Short description|Proposed concepts for human settlements on Mars}}{{distinguish|Exploration of Mars|Human mission to Mars}}{{Use American English|date=November 2020}}{{Use mdy dates|date=November 2020}}File: Martian habitat with colonists.jpg|upright=1.5|alt=An astronaut fixing machine on Mars and another heading back to the base|thumb|Artist conception of astronautastronautColonization or settlement of Mars is the theoretical migration of humans to Mars and the establishment of long-term human presence on the planet. The prospect has garnered interest from public space agencies and private corporations and has been extensively explored in science fiction writing, film, and art. Organizations have proposed plans for a human mission to Mars, the first step towards any colonization effort, but thus far no person has set foot on the planet, and there have been no return missions. However, landers and rovers have successfully explored the planetary surface and delivered information about conditions on the ground.Mars' orbit is close to Earth's orbit and the asteroid belt. While Mars' day and general composition are similar to Earth, the planet is hostile to life. Mars has an unbreathable atmosphere, thin enough that its temperature on average fluctuates between {{Cvt|-70 and 0|C|F}}, yet thick enough to cause planet-wide dust storms. The barren landscape on Mars is covered by fine, toxic dust and intense ionizing radiation. Mars has in-situ resources, such as underground water, Martian soil, and ore, which could be used by colonists. Opportunities to generate electricity via wind, solar, and nuclear power using resources on Mars are poor.Justifications and motivations for colonizing Mars include curiosity, the potential for humans to provide more in-depth observational research than uncrewed rovers, an economic interest in its resources, and the possibility that the settlement of other planets could decrease the probability of human extinction. Difficulties and hazards include radiation exposure during a trip to Mars and on its surface, toxic soil, low gravity, the isolation that accompanies Mars' distance from Earth, a lack of water, and cold temperatures.Commitments to researching permanent settlement have been made by public space agencies—NASA, ESA, Roscosmos, ISRO, the CNSA, among others—and private organizations—SpaceX, Lockheed Martin, and Boeing. In addition to these, there are space advocacy groups that are focused on Mars colonization, such as the Mars Society and The Planetary Society.

Mission concepts and timelines

Since the 20th century, there have been several proposed human missions to Mars both by government agencies and private companies.{{vague|date=March 2020}}Most of the human mission concepts as currently conceived by national governmental space programs would not be direct precursors to colonization. Programs such as those being tentatively planned by NASA, Roscosmos, and ESA are intended solely as exploration missions, with the establishment of a permanent base possible but not yet the main goal. {{Citation needed|date=March 2020}}Colonization requires the establishment of permanent habitats that have the potential for self-expansion and self-sustenance. Two early proposals for building habitats on Mars are the Mars Direct and the Semi-Direct concepts, advocated by Robert Zubrin, an advocate of the colonization of Mars.At the February 2017 World Government Summit, the United Arab Emirates announced a plan to establish a settlement on Mars by 2117, led by the Mohammed bin Rashid Space Centre.WEB,weblink UAE's Mars 2117 is put in action, February 22, 2017,weblink July 16, 2021, WEB,weblink Mars 2117, July 16, 2021, July 16, 2021,weblink live,

Comparisons between Earth and Mars{| class"wikitable plainrowheaders" style"float:right; margin-right:20px"|+ Atmospheric pressure comparison

! scope="col" | Location! scope="col" | Pressure! scope="row" | Olympus Mons summit
72abbr=onAtmosphere (unit)>atm)
! scope="row" | Mars average
610abbr=on}} (0.006 atm)
! scope="row" | Hellas Planitia bottom
1.16abbr=on}} (0.0114 atm)
! scope="row" | Armstrong limit
6.25abbr=on}} (0.0617 atm)
! scope="row" | Mount Everest summitJOURNAL, 10.1152/jappl.1999.86.3.1062, 10066724, Barometric pressures on Mt. Everest: New data and physiological significance, Journal of Applied Physiology, 86, 3, 1062–1066, 1999, West, John B., 27875962,
33.7abbr=on}} (0.3326 atm)
! scope="row" | Earth sea level
101.3abbr=on}} (1 atm)

Gravity and size

The surface gravity of Mars is just 38% that of Earth. Although microgravity is known to cause health problems such as muscle loss and bone demineralization,MAGAZINE, Fong, MD, Kevin, The Strange, Deadly Effects Mars Would Have on Your Body,weblink 12 February 2014, Wired (magazine), Wired, 2014-02-12, March 25, 2014,weblink" title="web.archive.org/web/20140325002634weblink">weblink live, WEB,weblink Gravity Hurts (so Good), NASA, 2001, July 12, 2017, May 28, 2017,weblink live, it is not known if Martian gravity would have a similar effect. The Mars Gravity Biosatellite was a proposed project designed to learn more about what effect Mars' lower surface gravity would have on humans, but it was cancelled due to a lack of funding.WEB, Mars Mice,weblink science.nasa.gov, 2004, July 12, 2017, May 16, 2017,weblink live, Mars has a surface area that is 28.4% of Earth's, which is only slightly less than the amount of dry land on Earth (which is 29.2% of Earth's surface). Mars has half the radius of Earth and only one-tenth the mass. This means that it has a smaller volume (≈15%) and lower average density than Earth.

Magnetosphere

Due to the lack of a magnetosphere, solar particle events and cosmic rays can easily reach the Martian surface.WEB,weblink The Solar Wind at Mars, January 31, 2001, Tony, Phillips, NASA, July 12, 2017, August 18, 2011,weblink live, NEWS, What makes Mars so hostile to life?, January 7, 2013,weblink BBC News, October 5, 2016, August 30, 2013,weblink" title="web.archive.org/web/20130830081628weblink">weblink live, JOURNAL, The impact of Mars geological evolution in high energy ionizing radiation environment through time, Planetary and Space Science – Eslevier, November 2012, A., Keating, P., Goncalves, 72, 1, 70–77, 10.1016/j.pss.2012.04.009, 2012P&SS...72...70K,

Atmosphere

Atmospheric pressure on Mars is far below the Armstrong limit at which people can survive without pressure suits. Since terraforming cannot be expected as a near-term solution, habitable structures on Mars would need to be constructed with pressure vessels similar to spacecraft, capable of containing a pressure between 30 and 100 kPa. The atmosphere is also toxic as most of it consists of carbon dioxide (95% carbon dioxide, 3% nitrogen, 1.6% argon, and traces totaling less than 0.4% of other gases, including oxygen).This thin atmosphere does not filter out ultraviolet sunlight, which causes instability in the molecular bonds between atoms. For example, ammonia (NH3) is not stable in the Martian atmosphere and breaks down after a few hours.NEWS, Whitehouse, David, July 15, 2004,weblink Dr. David Whitehouse – Ammonia on Mars could mean life, BBC News, August 14, 2012, October 31, 2012,weblink" title="web.archive.org/web/20121031013215weblink">weblink live, Also due to the thinness of the atmosphere, the temperature difference between day and night is much larger than on Earth, typically around 70 Â°C.WEB,weblink Mars Weather, Centro de Astrobiología, 2015, May 31, 2015, dead,weblink" title="archive.today/20151025050810weblink">weblink October 25, 2015, mdy-all, However, the day/night temperature variation is much lower during dust storms when very little light gets through to the surface even during the day, and instead warms the middle atmosphere.

Water and climate

Water on Mars is scarce, with rovers Spirit and Opportunity finding less than there is in Earth's driest desert.WEB, Why is Mars So Dry?,weblink Universe Today, 16 February 2004, 26 November 2018, November 27, 2018,weblink live, JOURNAL, Hecht, M. H., 2002, Metastability of Liquid Water on Mars, Icarus, 156, 2, 373–386, 10.1006/icar.2001.6794, 2002Icar..156..373H, WEB, Webster, Guy, Brown, Dwayne, NASA Mars Spacecraft Reveals a More Dynamic Red Planet,weblink 10 December 2013, NASA, 2014-03-02, December 14, 2013,weblink" title="web.archive.org/web/20131214013848weblink">weblink live, The climate is much colder than Earth, with mean surface temperatures between {{convert|186|and|268|K|C|abbr=on}} (depending on the season and latitude).WEB, Hamilton, Calvin, Mars Introduction,weblink March 8, 2013, August 16, 2013,weblink" title="web.archive.org/web/20130816032516weblink">weblink live, WEB, Elert, Glenn, Temperature on the Surface of Mars,weblink March 8, 2013, November 24, 2013,weblink" title="web.archive.org/web/20131124235435weblink">weblink live, The lowest temperature ever recorded on Earth was 184 K (−89.2 Â°C) in Antarctica.Because Mars is about 52% farther from the Sun, the amount of solar energy entering its upper atmosphere per unit area (the solar constant) is only around 43.3% of what reaches the Earth's upper atmosphere.JOURNAL,weblink Mars, in Earth's Image, 13, 9, 70, Discover Magazine, 12 June 2015, 1992Disc...13...70K, Kluger, J., 1992, April 27, 2012,weblink" title="web.archive.org/web/20120427061015weblink">weblink live, However, due to the much thinner atmosphere, a higher fraction of the solar energy reaches the surface as radiation.BOOK,weblink Atmospheric Effects on the Utility of Solar Power on Mars, dead,weblink" title="web.archive.org/web/20160305054458weblink">weblink 2016-03-05, 1993rnes.book..845H, 1993, Haberle, R. M., McKay, C. P., Pollack, J. B., Gwynne, O. E., Atkinson, D. H., Joseph Appelbaum, Appelbaum, J., Geoffrey A. Landis, Landis, G. A., Zurek, R. W., Flood, D. J., JOURNAL, 1957SvA.....1..547S, 1957SvA.....1..547S Page 547, 1, 547, Harvard.edu, Sharonov, V. V., 1957, The maximum solar irradiance on Mars is about 590 W/m2 compared to about 1000 W/m2 at the Earth's surface; optimal conditions on the Martian equator can be compared to those on Devon Island in the Canadian Arctic in June.WEB, Sunlight on Mars – Is There Enough Light on Mars to Grow Tomatoes?,weblink first the seed foundation, 26 November 2018, November 26, 2018,weblink live, Mars' orbit is more eccentric than Earth's, increasing temperature and solar constant variations over the course of the Martian year.{{citation needed|date=February 2021}} Mars has no rain and virtually no clouds,{{citation needed|date=February 2021}} so although cold, it is permanently sunny (apart from during dust storms). This means solar panels can always operate at maximum efficiency on dust-free days.Global dust storms are common throughout the year and can cover the entire planet for weeks, blocking sunlight from reaching the surface.BOOK, Viorel Badescu, Mars: Prospective Energy and Material Resources,weblink 2009, Springer Science & Business Media, 978-3-642-03629-3, 83, December 28, 2018, December 21, 2019,weblink live, WEB,weblink Teachers guide – Sunlight on mars – Tomatosphere, Tomatosphere, tomatosphere.org, 12 June 2015, dead,weblink" title="web.archive.org/web/20150623152330weblink">weblink 23 June 2015, This has been observed to cause temperature drops of 4 Â°C for several months after the storm.JOURNAL, Lori K., Fenton, Paul E., Geissler, Robert M., Haberle, Global warming and climate forcing by recent albedo changes on Mars, 2007, Nature (journal), Nature, 446, 10.1038/nature05718,weblink 646–649, 17410170, 7136, 2007Natur.446..646F, 4411643, dead,weblink" title="web.archive.org/web/20070708011126weblink">weblink July 8, 2007, mdy-all, In contrast, the only comparable events on Earth are infrequent large volcanic eruptions such as the Krakatoa event which threw large amounts of ash into the atmosphere in 1883, causing a global temperature drop of around 1 Â°C.These dust storms would affect electricity production from solar panels for long periods, and interfere with communications with Earth.WEB, Opportunity Hunkers Down During Dust Storm,weblink NASA, 8 June 2018, 26 November 2018, December 5, 2018,weblink live,

Temperature and seasons

Mars has an axial tilt of 25.19°, similar to Earth's 23.44°. As a result, Mars has seasons much like Earth, though on average they last nearly twice as long because the Martian year is about 1.88 Earth years. Mars' temperature regime is more similar to Earth's than to any other planet's in the solar system. While generally colder than Earth, Mars can have Earth-like temperatures in some areas and at certain times.

Soil

The Martian soil is toxic due to relatively high concentrations of chlorine and associated compounds, such as perchlorates, which are hazardous to all known forms of life,WEB, Mars covered in toxic chemicals that can wipe out living organisms, tests reveal,weblink The Guardian, July 6, 2017, 26 November 2018, February 18, 2021,weblink live, WEB, Toxic Mars: Astronauts Must Deal with Perchlorate on the Red Planet,weblink space.com, June 13, 2013, 26 November 2018, November 20, 2020,weblink live, even though some halotolerant microorganisms might be able to cope with enhanced perchlorate concentrations by drawing on physiological adaptations similar to those observed in the yeast Debaryomyces hansenii exposed in lab experiments to increasing NaClO4 concentrations.JOURNAL, Heinz, Jacob, Doellinger, Joerg, Maus, Deborah, Schneider, Andy, Lasch, Peter, Grossart, Hans‐Peter, Schulze‐Makuch, Dirk, 2022-08-10, Perchlorate‐specific proteomic stress responses of Debaryomyces hansenii could enable microbial survival in Martian brines, Environmental Microbiology, 24, 11, en, 1462–2920.16152, 10.1111/1462-2920.16152, 35920032, 1462-2912, free,

Survivability

Plants and animals cannot survive the ambient conditions on the surface of Mars.WEB,weblink Can Life exist on Mars?, Mars Academy, ORACLE-ThinkQuest,weblink" title="web.archive.org/web/20010222154617weblink">weblink February 22, 2001, However, some extremophile organisms that survive in hostile conditions on Earth have endured periods of exposure to environments that approximate some of the conditions found on Mars.

Length of day

The Martian day (or sol) is very close in duration to Earth's. A solar day on Mars is 24 hours, 39 minutes and 35.244 seconds.BOOK, Mars: Prospective Energy and Material Resources, illustrated, Viorel, Badescu, Springer Science & Business Media, 2009, 978-3-642-03629-3, 600,weblink May 20, 2016, December 25, 2019,weblink live, Extract of page 600 {{Webarchive|url=https://web.archive.org/web/20170416140128weblink |date=April 16, 2017 }}

Conditions for human habitation

(File:Project Deimos - Mars Surface Base.jpg|thumb|An expedition-style crewed mission would operate on the surface, but for limited amounts of time.)File:Mars-human-exploration-art-astronauts-vehicle-dust-full.jpg|thumb|DustDustConditions on the surface of Mars are closer to the conditions on Earth in terms of temperature and sunlight than on any other planet or moon, except for the cloud tops of Venus.WEB,weblink Atmospheric Flight on Venus, Glenn Research Center, National Aeronautics and Space Administration, June 2002, NASA/TM–2002–211467, Geoffrey A., Landis, Anthony, Colozza, Christopher M., LaMarre, dead,weblink" title="web.archive.org/web/20111016143148weblink">weblink October 16, 2011, However, the surface is not hospitable to humans or most known life forms due to the radiation, greatly reduced air pressure, and an atmosphere with only 0.16% oxygen.In 2012, it was reported that some lichen and cyanobacteria survived and showed remarkable adaptation capacity for photosynthesis after 34 days in simulated Martian conditions in the Mars Simulation Laboratory (MSL) maintained by the German Aerospace Center (DLR).WEB, Baldwin, Emily, Lichen survives harsh Mars environment,weblink 26 April 2012, Skymania News, 2012-04-27,weblink" title="web.archive.org/web/20120528145425weblink">weblink 28 May 2012, dead, JOURNAL, de Vera, J.-P., Kohler, Ulrich, The adaptation potential of extremophiles to Martian surface conditions and its implication for the habitability of Mars, EGU General Assembly Conference Abstracts, 14, 2113,weblink 26 April 2012, European Geosciences Union, 2012-04-27, dead,weblink" title="web.archive.org/web/20120504224706weblink">weblink 4 May 2012, 2012EGUGA..14.2113D, WEB,weblinkweblink" title="web.archive.org/web/20180323053655weblink">weblink 2018-03-23, Surviving the conditions on Mars, DLR, Some scientists think that cyanobacteria could play a role in the development of self-sustainable crewed outposts on Mars.JOURNAL, Sustainable life support on Mars – the potential roles of cyanobacteria, International Journal of Astrobiology, 15, 1, 65–92, 3 August 2015, Verseux, Cyprien, Baqué, Mickael, Lehto, Kirsi, de Vera, Jean-Pierre P., 10.1017/S147355041500021X, etal, 2016IJAsB..15...65V, free, They propose that cyanobacteria could be used directly for various applications, including the production of food, fuel and oxygen, but also indirectly: products from their culture could support the growth of other organisms, opening the way to a wide range of life-support biological processes based on Martian resources.Humans have explored parts of Earth that match some conditions on Mars. Based on NASA rover data, temperatures on Mars (at low latitudes) are similar to those in Antarctica.WEB,weblink Extreme Planet Takes Its Toll, Mars Exploration Rovers, Jet Propulsion Laboratory, California Institute of Technology, June 12, 2007, March 12, 2014,weblink" title="web.archive.org/web/20131102112312weblink">weblink November 2, 2013, dead, The atmospheric pressure at the highest altitudes reached by piloted balloon ascents (35 km (114,000 feet) in 1961,WEB,weblink Higher, Farther, and Longer — Record Balloon Flights in the Second Part of the Twentieth Century, U.S. Centennial Of Flight Commission,weblink" title="web.archive.org/web/20030430070850weblink">weblink April 30, 2003, September 22, 2014, 38 km in 2012) is similar to that on the surface of Mars. However, the pilots were not exposed to the extremely low pressure, as it would have killed them, but seated in a pressurized capsule.WEB,weblink Barometric Pressure vs. Altitude Table, Sable Systems International, 2014, dead,weblink" title="web.archive.org/web/20071025050551weblink">weblink 2007-10-25, Human survival on Mars would require living in artificial Mars habitats with complex life-support systems. One key aspect of this would be water processing systems. Being made mainly of water, a human being would die in a matter of days without it. Even a 5–8% decrease in total body water causes fatigue and dizziness, and with a 10% decrease comes physical and mental impairment (See Dehydration). A person in the UK uses 70–140 litres of water per day on average.WEB, How much water does an average person use?,weblink South West Water, 26 November 2018, April 7, 2019,weblink live, Through experience and training, astronauts on the ISS have shown it is possible to use far less, and that around 70% of what is used can be recycled using the ISS water recovery systems. (For instance, half of all water is used during showers.Mui, K. W., Wong, L. T., & Law, L. Y. (2007). Domestic water consumption benchmark development for Hong Kong. Building Services Engineering Research & Technology, 28(4), 329.) Similar systems would be needed on Mars but would need to be much more efficient, since regular robotic deliveries of water to Mars would be prohibitively expensive (the ISS is supplied with water four times per year). Potential access to on-site water (frozen or otherwise) via drilling has been investigated by NASA.NEWS,weblink Students Work to Find Ways to Drill for Water on Mars, Gillard, Eric, 2016-12-09, NASA, 2018-01-21, en, June 17, 2019,weblink live,

Effects on human health

Mars presents a hostile environment for human habitation. Different technologies have been developed to assist long-term space exploration and may be adapted for habitation on Mars. The existing record for the longest consecutive space flight is 438 days by cosmonaut Valeri Polyakov,NEWS, Schwirtz, Michael, Staying Put on Earth, Taking a Step to Mars,weblink 15 May 2010, The New York Times, 30 March 2009, July 7, 2018,weblink live, and the most accrued time in space is 878 days by Gennady Padalka.NEWS
, Cheng
, Kenneth
, Breaking Space Records
,weblink
, 28 June 2015
, The New York Times
, 27 March 2015
,weblink" title="web.archive.org/web/20150405145407weblink">weblink
, 5 April 2015
, dead
, The longest time spent outside the protection of the Earth's Van Allen radiation belt is about 12 days for the Apollo 17 Moon landing. This is minor in comparison to the 1100-day journey to Mars and backWEB,weblink NASA's Journey to Mars – Pioneering Next Steps in Space Exploration, October 2015, NASA, 2017-03-19, August 10, 2019,weblink live, envisioned by NASA for possibly as early as the year 2028. Scientists have also hypothesized that many different biological functions can be negatively affected by the environment of Mars colonies. Due to higher levels of radiation, there are a multitude of physical side-effects that must be mitigated.NEWS,weblink Speech Monitoring of Cognitive Deficits and Stress – NSBRI, NSBRI, 2017-03-18, en-US, March 27, 2017,weblink" title="web.archive.org/web/20170327171207weblink">weblink live, In addition, Martian soil contains high levels of toxins which are hazardous to human health.

Physical effects

The difference in gravity may negatively affect human health by weakening bones and muscles. There is also risk of osteoporosis and cardiovascular problems. Current rotations on the International Space Station put astronauts in zero gravity for six months, a comparable length of time to a one-way trip to Mars. This gives researchers the ability to better understand the physical state that astronauts going to Mars would arrive in. Once on Mars, surface gravity is only 38% of that on Earth. Microgravity affects the cardiovascular, musculoskeletal and neurovestibular (central nervous) systems. The cardiovascular effects are complex. On Earth, blood within the body stays 70% below the heart, but in microgravity this is not the case due to nothing pulling the blood down. This can have several negative effects. Once entering into microgravity, the blood pressure in the lower body and legs is significantly reduced.JOURNAL, Nguyen, Nguyen, Gyutae, Kim, Kyu-Sung, Kim, 2020, Effects of Microgravity on Human Physiology, Korean Journal of Aerospace & Environmental Medicine, 30, 1, 25–29, 10.46246/KJAsEM.30.1.25, 225893986, free, This causes legs to become weak through loss of muscle and bone mass. Astronauts show signs of a puffy face and chicken legs syndrome. After the first day of reentry back to earth, blood samples showed a 17% loss of blood plasma, which contributed to a decline of erythropoietin secretion.Aubert AE, Beckers F, Verheyden B. Cardiovascular function and basics of physiology in microgravity. Acta Cardiologica 2005;60(2):129-151.Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology. CMAJ : Canadian Medical Association journal = journal de l’Association medicale canadienne 2009;180(13):1317-1323. On the skeletal system which is important to support our body's posture, long space flight and exposure to microgravity cause demineralization and atrophy of muscles. During re-acclimation, astronauts were observed to have a myriad of symptoms including cold sweats, nausea, vomiting and motion sickness.Heer M, Paloski WH. Space motion sickness: Incidence, etiology, and countermeasures. Autonomic Neuroscience 2006;129(1):77-79. Returning astronauts also felt disoriented. Journeys to and from Mars being six months is the average time spent at the ISS. Once on Mars with its lesser surface gravity (38% percent of Earth's), these health effects would be a serious concern.NEWS,weblink How Will Living On Mars Affects Our Human Body?, 2014-02-11, Space Safety Magazine, 2017-03-19, en-US, March 27, 2017,weblink" title="web.archive.org/web/20170327170248weblink">weblink live, Upon return to Earth, recovery from bone loss and atrophy is a long process and the effects of microgravity may never fully reverse.{{Citation needed|date=October 2019}}

Radiation

Dangerous amounts of radiation reach Mars' surface despite it being much further from the Sun compared to Earth. Mars has lost its inner dynamo giving it a weaker global magnetosphere than Earth does. Combined with a thin atmosphere, this permits a significant amount of ionizing radiation to reach the Martian surface. There are two main types of radiation risks to traveling outside the protection of Earth's atmosphere and magnetosphere: galactic cosmic rays (GCR) and solar energetic particles (SEP). Earth's magnetosphere protects from charged particles from the Sun, and the atmosphere protects against uncharged and highly energetic GCRs. There are ways to mitigate solar radiation, but without much of an atmosphere, the only solution to the GCR flux is heavy shielding amounting to roughly 15 centimeters of steel, 1 meter of rock, or 3 meters of water, limiting human colonists to living underground most of the time.WEB,weblink NASA.gov, February 1991, August 6, 2020, November 12, 2020,weblink live, Simonsen, Lisa C., Nealy, John E., {{Further|Health threat from cosmic rays}}The Mars Odyssey spacecraft carries an instrument, the Mars Radiation Environment Experiment (MARIE), to measure the radiation. MARIE found that radiation levels in orbit above Mars are 2.5 times higher than at the International Space Station. The average daily dose was about {{convert|220|uGy|mrad|abbr=on}}—equivalent to 0.08 Gy per year.WEB,weblink References & Documents, Human Adaptation and Countermeasures Division, Johnson Space Center, NASA, dead,weblink" title="web.archive.org/web/20100530060723weblink">weblink May 30, 2010, A three-year exposure to such levels would exceed the safety limits currently adopted by NASA,Real Martians: How to Protect Astronauts from Space Radiation on Mars. {{Webarchive|url=https://web.archive.org/web/20190925202707weblink |date=September 25, 2019 }} Moon To Mars. NASA. 30 September 2015. Quote: "[...] a trip to interplanetary space carries more radiation risk than working in low-Earth orbit, said Jonathan Pellish, a space radiation engineer at Goddard." and the risk of developing cancer due to radiation exposure after a Mars mission could be two times greater than what scientists previously thought.Study: Collateral Damage from Cosmic Rays Increases Cancer Risk for Mars Astronauts {{Webarchive|url=https://web.archive.org/web/20191014002551weblink |date=October 14, 2019 }}. University of Nevada, Las Vegas (UNLV). May 2017."Non-Targeted Effects Models Predict Significantly Higher Mars Mission Cancer Risk than Targeted Effects Models." Francis A. Cucinotta, and Eliedonna Cacao. Nature, Scientific Reports, volume 7, Article number: 1832. 12 May 2017.{{doi|10.1016/j.lssr.2015.04.002}} Occasional solar proton events (SPEs) produce much higher doses, as observed in September 2017, when NASA reported radiation levels on the surface of Mars were temporarily doubled, and were associated with an aurora 25-times brighter than any observed earlier, due to a massive, and unexpected, solar storm.WEB, Scott, Jim, Large solar storm sparks global aurora and doubles radiation levels on the martian surface,weblink 30 September 2017, Phys.org, 30 September 2017, September 30, 2017,weblink live, Building living quarters underground (possibly in Martian lava tubes) would significantly lower the colonists' exposure to radiation.File:PIA17601-Comparisons-RadiationExposure-MarsTrip-20131209.png|thumb|left|Comparison of radiation doses—includes the amount detected on the trip from Earth to Mars by the RAD on the MSL (2011–2013).JOURNAL, Kerr, Richard, Radiation Will Make Astronauts' Trip to Mars Even Riskier, 31 May 2013, Science (journal), Science, 340, 1031, 10.1126/science.340.6136.1031, 23723213, 6136, 2013Sci...340.1031K, JOURNAL, Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory, Science (journal), ScienceScience (journal), ScienceMuch remains to be learned about space radiation. In 2003, NASA's Lyndon B. Johnson Space Center opened a facility, the NASA Space Radiation Laboratory, at Brookhaven National Laboratory, that employs particle accelerators to simulate space radiation. The facility studies its effects on living organisms, as well as experimenting with shielding techniques.WEB,weblink Space Radiobiology, NASA/BNL Space Radiation Program, NASA Space Radiation Laboratory, November 1, 2011, September 16, 2007, September 24, 2013,weblink" title="web.archive.org/web/20130924040250weblink">weblink live, Initially, there was some evidence that this kind of low level, chronic radiation is not quite as dangerous as once thought; and that radiation hormesis occurs.BOOK, Zubrin, Robert, Robert Zubrin, The Case for Mars: The Plan to Settle the Red Planet and Why We Must, Touchstone, 1996, 978-0-684-83550-1, 114–116,weblink However, results from a 2006 study indicated that protons from cosmic radiation may cause twice as much serious damage to DNA as previously estimated, exposing astronauts to greater risk of cancer and other diseases.WEB,weblink Space Radiation Hinders NASA's Mars Ambitions, Finding Dulcinea, September 17, 2009, Anita, Gutierrez-Folch, April 27, 2012, September 28, 2013,weblink" title="web.archive.org/web/20130928013958weblink">weblink live, As a result of the higher radiation in the Martian environment, the summary report of the Review of U.S. Human Space Flight Plans Committee released in 2009 reported that "Mars is not an easy place to visit with existing technology and without a substantial investment of resources." NASA is exploring a variety of alternative techniques and technologies such as deflector shields of plasma to protect astronauts and spacecraft from radiation.

Psychological effects

Due to the communication delays, new protocols need to be developed in order to assess crew members' psychological health. Researchers have developed a Martian simulation called HI-SEAS (Hawaii Space Exploration Analog and Simulation) that places scientists in a simulated Martian laboratory to study the psychological effects of isolation, repetitive tasks, and living in close-quarters with other scientists for up to a year at a time. Computer programs are being developed to assist crews with personal and interpersonal issues in absence of direct communication with professionals on Earth.WEB,weblink Mental preparation for Mars, American Psychological Association, en, 2017-03-19, March 27, 2017,weblink" title="web.archive.org/web/20170327170949weblink">weblink live,

Terraforming

missing image!
- MarsTransitionV.jpg -
Artist's conception of the process of terraforming Mars as discussed in some works of science fiction
{{See also|Oxygen evolution}}Various works of fiction put forward the idea of terraforming Mars to allow a wide variety of life forms, including humans, to survive unaided on Mars' surface. Some ideas of possible technologies that may be able to contribute to the terraforming of Mars have been conjectured, but none would be able to bring the entire planet into the Earth-like habitat pictured in science fiction.WEB,weblink Technological Requirements for Terraforming Mars, Robert M., Zubrin, Christopher P., McKay, November 1, 2006, February 1, 2016,weblink" title="web.archive.org/web/20160201124311weblink">weblink live,

Minimum size of a colony

To be self-sustaining, a colony would have to be large enough to provide all the necessary living services. These includeJOURNAL, Salotti, Jean-Marc, Minimum number of Settlers for Survival on Another planet, Nature, 2020, Scientific Reports, 1, 9700, 10.1038/s41598-020-66740-0, 32546782, 7297723, 2020NatSR..10.9700S,
  • Ecosystem management: producing appropriate gases, controlling air composition pressure and temperature, collecting and producing water, growing food and processing organic wastes.
  • Energy production: this includes extracting methane for vehicles and if photovoltaic cells are used to produce energy this would include the extraction and processing of silicates, to augment or replace any original equipment.
  • Industry: extracting and processing appropriate ores, manufacturing tools and other objects; producing clothes, medicine, glass, ceramics, plastics.
  • Building: even if the base is constructed before arrival, it will need frequent adaptation according to the evolution of the settlement as well as inevitable replacement.
  • Social activities: this includes raising children and educating them, health care, preparing meals, cleaning, washing, organizing the work and making decisions. Time for sport, culture and entertainment can be minimized but not eliminated.
As the number of individuals grows, both activities and objects can be shared between them. Growth also will offset the risks of collapse of the society, caused by sudden deaths, accidents, infertility or inbreeding. But this may not prevent mortal combat between different groups of individuals, or the loss of efficiency due to inappropriate social organization.By mathematical modelling of the time spent by people on these issues and by keeping things simple, Salotti concludes that the minimum number for a colony on Mars is 110. This is close to other studies of the genetic problems involved in the longer journey to Proxima Centauri b (6,000+ years).JOURNAL, Smith, Cameron M., Estimation of a genetically viable population for multigenerational interstellar voyaging: Review and data for project Hyperion, Acta Astronautica, 2014, 97, 16–29, 10.1016/j.actaastro.2013.12.013, 2014AcAau..97...16S,weblink 1 April 2022, April 1, 2022,weblink live,

Transportation

Interplanetary spaceflight

(File:Mars orbit rendez vous S95 01407.jpg|thumb|Rendezvous, an interplanetary stage and lander stage come together over Mars)File:Mars Valles Marineris.jpeg|thumb|left|Mars (Viking 1Viking 1Mars requires less energy per unit mass (delta V) to reach from Earth than any planet except Venus. Using a Hohmann transfer orbit, a trip to Mars requires approximately nine months in space.WEB,weblink #21b, Flight to Mars: How Long? Along what Path?, Phy6.org, 2004-12-12, 2013-08-01, David P., Stern, From Stargazers to Starships, September 13, 2012,weblink" title="web.archive.org/web/20120913081839weblink">weblink live, Modified transfer trajectories that cut the travel time down to four to seven months in space are possible with incrementally higher amounts of energy and fuel compared to a Hohmann transfer orbit, and are in standard use for robotic Mars missions. Shortening the travel time below about six months requires higher delta-v and an increasing amount of fuel, and is difficult with chemical rockets. It could be feasible with advanced spacecraft propulsion technologies, some of which have already been tested to varying levels, such as Variable Specific Impulse Magnetoplasma Rocket,WEB,weblink NASA, Tech Briefs, Variable-Specific-Impulse Magnetoplasma Rocket, September 2001, March 26, 2008, December 11, 2008,weblink" title="web.archive.org/web/20081211065353weblink">weblink live, and nuclear rockets. In the former case, a trip time of forty days could be attainable,WEB,weblink Ion engine could one day power 39-day trips to Mars, New Scientist, August 25, 2017, March 13, 2015,weblink" title="web.archive.org/web/20150313224849weblink">weblink live, and in the latter, a trip time down to about two weeks.BOOK, Zubrin, Robert, Robert Zubrin, The Case for Mars: The Plan to Settle the Red Planet and Why We Must, Touchstone, 1996, 978-0-684-83550-1, registration,weblink In 2016, a University of California, Santa Barbara scientist said they could further reduce travel time for a small robotic probe to Mars down to "as little as 72 hours" with the use of a laser propelled sail (directed photonic propulsion) system instead of the fuel-based rocket propulsion system.WEB,weblink NASA Scientist: I can get humans to Mars in a month, USA TODAY, 2016-03-01, January 12, 2017,weblink" title="web.archive.org/web/20170112050838weblink">weblink live, Starlight: Directed Energy for Relativistic Interstellar Missions. {{Webarchive|url=https://web.archive.org/web/20191109072355weblink |date=November 9, 2019 }} UCSB Experimental Cosmology Group. Accessed on 9 November 2019.During the journey the astronauts would be subject to radiation, which would require a means to protect them. Cosmic radiation and solar wind cause DNA damage, which increases the risk of cancer significantly. The effect of long-term travel in interplanetary space is unknown, but scientists estimate an added risk of between 1% and 19% (one estimate is 3.4%) for males to die of cancer because of the radiation during the journey to Mars and back to Earth. For females the probability is higher due to generally larger glandular tissues.WEB,weblink NASA, Space radiation between Earth and Mars poses a hazard to astronauts., September 6, 2017, June 7, 2017,weblink live,

Landing on Mars

(File:Mars Lander by Brian McMullin, 1986.jpg|thumb|Painting of a landing on Mars (1986))Mars has a surface gravity 0.38 times that of Earth, and the density of its atmosphere is about 0.6% of that on Earth.WEB,weblink Mars Fact Sheet, 2007-09-18, Dr. David R., Williams, 2004-09-01, NASA Goddard Space Flight Center, June 12, 2010,weblink" title="web.archive.org/web/20100612092806weblink">weblink live, The relatively strong gravity and the presence of aerodynamic effects make it difficult to land heavy, crewed spacecraft with thrusters only, as was done with the Apollo Moon landings, yet the atmosphere is too thin for aerodynamic effects to be of much help in aerobraking and landing a large vehicle. Landing piloted missions on Mars would require braking and landing systems different from anything used to land crewed spacecraft on the Moon or robotic missions on Mars.WEB,weblink The Mars Landing Approach: Getting Large Payloads to the Surface of the Red Planet, Nancy, Atkinson, 2007-07-17, 2007-09-18, April 30, 2010,weblink" title="web.archive.org/web/20100430183743weblink">weblink live, If one assumes carbon nanotube construction material will be available with a strength of {{cvt|130|GPa}} then a space elevator could be built to land people and material on Mars.WEB, The Space Elevator – Chapters 2 & 7,weblink" title="web.archive.org/web/20050603001216weblink">weblink 2005-06-03, dead,weblink A space elevator on Phobos (a Martian moon) has also been proposed.CONFERENCE,weblink Space Colonization Using Space-Elevators from Phobos, Space Technology and Applications International Forum - Staif 2003, 654, 1227–1235, Leonard M., Weinstein, AIP Conference Proceedings, 2003AIPC..654.1227W, 2003, 10.1063/1.1541423, 2060/20030065879, free, July 7, 2017, September 27, 2013,weblink" title="web.archive.org/web/20130927193413weblink">weblink live,

Phobos as a space elevator for Mars

File:Space elevator Phobos.jpg|thumb|300px|Space elevator Phobos ]]File:Earth vs Mars gravity at elevation.webp|thumb|300px|Earth vs Mars vs Moon gravity at elevationelevationPhobos is synchronously orbiting Mars, where the same face stays facing the planet at ~6,028 km above the Martian surface. A space elevator could extend down from Phobos to Mars 6,000 km, about 28 kilometers from the surface, and just out of the atmosphere of Mars. A similar space elevator cable could extend out 6,000 km the opposite direction that would counterbalance Phobos. In total the space elevator would extend out over 12,000 km which would be below Areostationary orbit of Mars (17,032 km). A rocket launch would still be needed to get the rocket and cargo to the beginning of the space elevator 28 km above the surface. The surface of Mars is rotating at 0.25 km/s at the equator and the bottom of the space elevator would be rotating around Mars at 0.77 km/s, so only 0.52 km/s of Delta-v would be needed to get to the space elevator. Phobos orbits at 2.15 km/s and the outer most part of the space elevator would rotate around Mars at 3.52 km/s.

Equipment needed for colonization

Colonization of Mars would require a wide variety of equipment—both equipment to directly provide services to humans and production equipment used to produce food, propellant, water, energy and breathable oxygen—in order to support human colonization efforts. Required equipment will include: (File:Mars Greenhouse.jpg|thumb|Mars greenhouses feature in many colonization designs, especially for food production and other purposes.)(File:Possible_exploration_of_the_surface_of_Mars.jpg|thumb|Various technologies and devices for Mars are shown in the illustration of a Mars base.)
  • Food production spaces and equipment.NEWS, Scoles title=Mars Needs Insects - If humans are ever going to live on the red planet, they’re going to have to bring bugs with them.
date=27 November 2023 The New York Times >url-status=live weblink >archivedate=28 November 2023, 28 November 2023,
  • Propellant production equipment, generally thought to be hydrogen and methane through the Sabatier reactionNEWS, Belluscio, Alejandro G., SpaceX advances drive for Mars rocket via Raptor power,weblink NASAspaceflight.com, 7 March 2014, 2014-03-14, September 11, 2015,weblink" title="web.archive.org/web/20150911235533weblink">weblink live, for fuel—with oxygen oxidizer—for chemical rocket engines
  • Fuels or other energy source for use with surface transportation. Carbon monoxide/oxygen (CO/O2) engines have been suggested for early surface transportation use as both carbon monoxide and oxygen can be straightforwardly produced by zirconium dioxide electrolysis from the Martian atmosphere without requiring use of any of the Martian water resources to obtain hydrogen.JOURNAL, Landis, Mars Rocket Vehicle Using In Situ Propellants, Journal of Spacecraft and Rockets, 2001, 38, 5, 730–735, 10.2514/2.3739, 2001JSpRo..38..730L,
  • Off-planet communication equipment
  • Equipment for moving over the surface—Mars suit, crewed rovers and possibly even Mars aircraft.

Basic utilities

In order to function at all the colony would need the basic utilities to support human civilization. These would need to be designed to handle the harsh Martian environment and would either have to be serviceable while wearing an EVA suit or housed inside a human habitable environment. For example, if electricity generation systems rely on solar power, large energy storage facilities will also be needed to cover the periods when dust storms block out the sun, and automatic dust removal systems may be needed to avoid human exposure to conditions on the surface. If the colony is to scale beyond a few people, systems will also need to maximise use of local resources to reduce the need for resupply from Earth, for example by recycling water and oxygen and being adapted to be able to use any water found on Mars, whatever form it is in.

Communication with Earth

Communications with Earth are relatively straightforward during the half-sol when Earth is above the Martian horizon. NASA and ESA included communications relay equipment in several of the Mars orbiters, so Mars already has communications satellites. While these will eventually wear out, additional orbiters with communication relay capability are likely to be launched before any colonization expeditions are mounted.The one-way communication delay due to the speed of light ranges from about 3 minutes at closest approach (approximated by perihelion of Mars minus aphelion of Earth) to 22 minutes at the largest possible superior conjunction (approximated by aphelion of Mars plus aphelion of Earth). Real-time communication, such as telephone conversations or Internet Relay Chat, between Earth and Mars would be highly impractical due to the long time lags involved. NASA has found that direct communication can be blocked for about two weeks every synodic period, around the time of superior conjunction when the Sun is directly between Mars and Earth,WEB,weblink During Solar Conjunction, Mars Spacecraft Will Be on Autopilot, Spotlight, JPL, NASA, October 20, 2006, October 31, 2006, September 27, 2013,weblink" title="web.archive.org/web/20130927193237weblink">weblink dead, although the actual duration of the communications blackout varies from mission to mission depending on various factors—such as the amount of link margin designed into the communications system, and the minimum data rate that is acceptable from a mission standpoint. In reality most missions at Mars have had communications blackout periods of the order of a month.JOURNAL, 10.1196/annals.1370.007, MarsSat: Assured Communication with Mars, 2005, Gangale, T., Annals of the New York Academy of Sciences, 1065, 296–310, 16510416, 2005NYASA1065..296G, 22087209, A satellite at the {{L4}} or {{L5}} Earth–Sun Lagrangian point could serve as a relay during this period to solve the problem; even a constellation of communications satellites would be a minor expense in the context of a full colonization program. However, the size and power of the equipment needed for these distances make the L4 and L5 locations unrealistic for relay stations, and the inherent stability of these regions, although beneficial in terms of station-keeping, also attracts dust and asteroids, which could pose a risk.WEB,weblink Sun-Mars Libration Points and Mars Mission Simulations, Stk.com, 2013-10-06, dead,weblink" title="web.archive.org/web/20130927055355weblink">weblink 2013-09-27, Despite that concern, the STEREO probes passed through the L4 and L5 regions without damage in late 2009.Recent work by the University of Strathclyde's Advanced Space Concepts Laboratory, in collaboration with the European Space Agency, has suggested an alternative relay architecture based on highly non-Keplerian orbits. These are a special kind of orbit produced when continuous low-thrust propulsion, such as that produced from an ion engine or solar sail, modifies the natural trajectory of a spacecraft. Such an orbit would enable continuous communications during solar conjunction by allowing a relay spacecraft to "hover" above Mars, out of the orbital plane of the two planets.WEB,weblink A Novel Interplanetary Communications Relay, August 2010, 2011-02-14, September 27, 2013,weblink" title="web.archive.org/web/20130927194004weblink">weblink live, Such a relay avoids the problems of satellites stationed at either L4 or L5 by being significantly closer to the surface of Mars while still maintaining continuous communication between the two planets.

Robotic precursors

File:Mars orbital command module.webp|thumb|Mars orbital command module. Manned module to control robots and Mars aircraft without the latency of controlling it from Earthweblink]]The path to a human colony could be prepared by robotic systems such as the Mars Exploration Rovers Spirit, Opportunity, Curiosity and Perseverance. These systems could help locate resources, such as ground water or ice, that would help a colony grow and thrive. The lifetimes of these systems would be years and even decades, and as recent developments in commercial spaceflight have shown, it may be that these systems will involve private as well as government ownership. These robotic systems also have a reduced cost compared with early crewed operations, and have less political risk.Wired systems might lay the groundwork for early crewed landings and bases, by producing various consumables including fuel, oxidizers, water, and construction materials. Establishing power, communications, shelter, heating, and manufacturing basics can begin with robotic systems, if only as a prelude to crewed operations.Mars Surveyor 2001 Lander MIP (Mars ISPP Precursor) was to demonstrate manufacture of oxygen from the atmosphere of Mars,JOURNAL, D., Kaplan,weblink The Mars In-Situ-Propellant-Production Precursor (MIP) Flight Demonstration, Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration, 991, 54, etal, 1999misp.conf...54K, 1999, August 30, 2012, September 27, 2013,weblink" title="web.archive.org/web/20130927132905weblink">weblink live, Paper presented at Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration, Lunar and Planetary Institute, Oct. 2–4 1999, Houston, TX. and test solar cell technologies and methods of mitigating the effect of Martian dust on the power systems.WEB, G. A., Landis, P., Jenkins, D., Scheiman, C., Baraona,weblink MATE and DART: An Instrument Package for Characterizing Solar Energy and Atmospheric Dust on Mars, August 30, 2012, September 27, 2013,weblink" title="web.archive.org/web/20130927132807weblink">weblink live, Presented at Concepts and Approaches for Mars Exploration, July 18–20, 2000 Houston, Texas.{{update after|2014|4|17}}Before any people are transported to Mars on the notional 2020s Mars transportation infrastructure envisioned by SpaceX, a number of robotic cargo missions would be undertaken first in order to transport the requisite equipment, habitats and supplies.AV MEDIA, Gwynne Shotwell, 2014-03-21, Broadcast 2212: Special Edition, interview with Gwynne Shotwell, audio file,weblink 2014-03-22,weblink" title="web.archive.org/web/20140322013556weblink">weblink 2014-03-22, mp3, 29:45–30:40, The Space Show, 2212, would have to throw a bunch of stuff before you start putting people there. ... It is a transportation system between Earth and Mars., dead, Equipment that would be necessary would include "machines to produce fertilizer, methane and oxygen from Mars' atmospheric nitrogen and carbon dioxide and the planet's subsurface water ice" as well as construction materials to build transparent domes for initial agricultural areas.NEWS,weblink Huge Mars Colony Eyed by SpaceX Founder, 2012-12-13, 2014-03-14, Discovery News, November 15, 2014,weblink" title="web.archive.org/web/20141115083758weblink">weblink live,

Economics

File:PIA07269-Mars Rover Opportunity-Iron Meteorite.jpg|thumb|right|Iron–nickel meteorite found on Mars' surface (Heat Shield RockHeat Shield RockAs with early colonies in the New World, economics would be a crucial aspect to a colony's success. The reduced gravity well of Mars and its position in the Solar System may facilitate Mars–Earth trade and may provide an economic rationale for continued settlement of the planet. Given its size and resources, this might eventually be a place to grow food and produce equipment to mine the asteroid belt.Some early Mars colonies might specialize in developing local resources for Martian consumption, such as water and/or ice. Local resources can also be used in infrastructure construction.JOURNAL, 10.1016/j.actaastro.2008.07.011, Meteoritic steel as a construction resource on Mars, 2009, Landis, Geoffrey A., Acta Astronautica, 64, 2–3, 183, 2009AcAau..64..183L, One source of Martian ore currently known to be available is metallic iron in the form of nickel–iron meteorites. Iron in this form is more easily extracted than from the iron oxides that cover the planet.Another main inter-Martian trade good during early colonization could be manure.Lovelock, James and Allaby, Michael, "The Greening of Mars" 1984 Assuming that life does not exist on Mars, the soil is going to be very poor for growing plants, so manure and other fertilizers will be valued highly in any Martian civilization until the planet changes enough chemically to support growing vegetation on its own.Solar power is a candidate for power for a Martian colony. Solar insolation (the amount of solar radiation that reaches Mars) is about 42% of that on Earth, since Mars is about 52% farther from the Sun and insolation falls off as the square of distance. But the thin atmosphere would allow almost all of that energy to reach the surface as compared to Earth, where the atmosphere absorbs roughly a quarter of the solar radiation. Sunlight on the surface of Mars would be much like a moderately cloudy day on Earth.WEB,weblink Effect of Clouds and Pollution on Insolation, 2012-10-04, March 5, 2012,weblink" title="web.archive.org/web/20120305180029weblink">weblink live,

Economic drivers

Space colonization on Mars can roughly be said to be possible when the necessary methods of space colonization become cheap enough (such as space access by cheaper launch systems) to meet the cumulative funds that have been gathered for the purpose.The rise of reusable launch vehicles in the 2020s has substantially reduced costs of access to space and may now make it feasible.WEB, Schramm, Jonathan, 2024-02-20, Reusable Rockets To Create Multiple New Markets By Lowering Costs Drastically,weblink 2024-04-08, www.securities.io, en-US, With a published price of {{USD|62 million}} per launch of up to {{convert|22800|kg|abbr=on}} payload to low Earth orbit or {{convert|4020|kg|abbr=on}} to Mars,WEB, SpaceX Capabilities and Services,weblink 2017, SpaceX, 2017-03-12, dead,weblink" title="web.archive.org/web/20131007205105weblink">weblink 2013-10-07, SpaceX Falcon 9 rockets are already the "cheapest in the industry".NEWS, Belfiore, Michael, The Rocketeer,weblink Foreign Policy, 2013-12-09, 2013-12-11, December 10, 2013,weblink" title="web.archive.org/web/20131210233009weblink">weblink live, SpaceX's reusability includes the Falcon Heavy and future methane-based launch vehicles including the Starship. SpaceX was successful in developing the reusable technology with Falcon 9 and Falcon Heavy and as of April 2024, it was rapidly advancing towards reusability of Starship. This is expected to "have a major impact on the cost of access to space", and change the increasingly competitive market in space launch services.NEWS,weblink Recycled rockets: SpaceX calls time on expendable launch vehicles, BBC News, Amos, Jonathan, 30 September 2013, 2013-10-02, October 3, 2013,weblink" title="web.archive.org/web/20131003085420weblink">weblink live, WEB, kentnstxl, 2024-02-12, Reducing the Cost of Space Travel with Reusable Launch Vehicles,weblink 2024-04-08, NSTXL, en-US, Alternative funding approaches might include the creation of inducement prizes. For example, the 2004 President's Commission on Implementation of United States Space Exploration Policy suggested that an inducement prize contest should be established, perhaps by government, for the achievement of space colonization. One example provided was offering a prize to the first organization to place humans on the Moon and sustain them for a fixed period before they return to Earth.WEB,weblink A Journey to Inspire, Innovate, and Discover, Report of the President's Commission on Implementation of United States Space Exploration Policy, June 2004, December 14, 2013, October 10, 2012,weblink" title="web.archive.org/web/20121010151959weblink">weblink live,

Mining the asteroid belts from Mars

{{see also|Category:Main-belt asteroids|Amor asteroids|Apollo asteroids}}
missing image!
- InnerSolarSystem-en.png -
The asteroids of the inner Solar System and Jupiter: The belt is located between the orbits of Jupiter and Mars.{| style="width:100%;"
{{legend2|#FFFF00|border=1px solid #B3B300|Sun}}{{legend2|#6ad768|border=1px solid #2B9929|Jupiter trojans}}{{legend-line|#007DD6 solid Orbits of planets}}{{legend2|#e9e9e9|border=1px solid #999999|Asteroid belt}}{hide}legend2|#d39300|border=1px solid #855D00|Hilda asteroids {{small|(Hildas){edih }{{legend2|#c90000|border=1px solid #940000|(selection)}}}}
File:Main Asteroid Belt Asteroids.jpg|thumb|300px|Main Asteroid Belt 42 largest asteroids{{legend-line|#14A80F solid 3px|Amor asteroid belt}}{{legend-line|#CC0000 solid 3px|Apollo asteroid belt}}{{legend-line|#F8DC2C solid 3px|Aten asteroid beltAten asteroid beltSince Mars is much closer to the asteroid belt than Earth is, it would take less Delta-v to get to the Asteroid belt and return minerals to Mars. One hypothesis is that the Moons of Mars (Phobos and Deimos) are actually Asteroid captures from the Asteroid belt.WEB,weblink Potato-Shaped Mars Moon Phobos May be a Captured Asteroid, Space.com, January 15, 2014, November 30, 2022, November 30, 2022,weblink live, 16 Psyche in the main belt could have over 10,000 quadrillion dollars worth of minerals. On October 13, 2023, NASA launched the Psyche orbiter, which is set to reach the asteroid by August 2029.WEB,weblink NASA Continues Psyche Asteroid Mission, Jet Propulsion Laboratory, November 30, 2022, November 8, 2022,weblink live, 511 Davida could have $27 quadrillion worth of minerals and resources.WEB,weblink Could We Use Mars as a Base for Asteroid Mining?, June 21, 2022, November 30, 2022, November 30, 2022,weblink live, Using the moon Phobos to launch spacecraft is energetically favorable and a useful location from which to dispatch missions to main belt asteroids.JOURNAL, 10.1016/j.pss.2022.105450, Phobos and Mars orbit as a base for asteroid exploration and mining, 2022, Taylor, Anthony J., McDowell, Jonathan C., Elvis, Martin, Planetary and Space Science, 214, 105450, 2022P&SS..21405450T, 247275237, free, Mining the asteroid belt from Mars and its moons could help in the colonization of Mars.WEB,weblink Space Mining: Scientists Discover Two Asteroids Whose Precious Metals Would Exceed Global Reserves, Forbes, November 30, 2022, November 30, 2022,weblink live, WEB,weblink Hubble Examines Massive Metal Asteroid Called 'Psyche' That's Worth Way More Than Our Global Economy, Forbes, November 30, 2022, November 30, 2022,weblink live, WEB,weblink NASA Heads for 'Psyche,' A Mysterious Metallic Asteroid That Could be the Heart of a Dead Planet, Forbes, November 30, 2022, November 30, 2022,weblink live,

Possible locations for settlements

File:Pavonis Mons lava tube skylight crop.jpg|thumb|280px|Cropped version of a HiRISE image of a lava tube skylight entrance on the Martian volcano Pavonis MonsPavonis Mons

Poles

It has been proposed to set up a first base at a Martian pole, which would allow access to water.JOURNAL, Rüede, Anne-Marlene, Ivanov, Anton, Leonardi, Claudio, Volkova, Tatiana, Systems engineering and design of a Mars Polar Research Base with a human crew, Acta Astronautica, Elsevier BV, 156, 2019, 0094-5765, 10.1016/j.actaastro.2018.06.051, 234–249, 2019AcAau.156..234R, 85551985,weblink

Caves

{{See also|Caves of Mars Project}}Caves would naturally provide a degree of insulation from Martian hazards for humans on the planet.NEWS, Kornei, Katherine, House-Hunting on Mars Has Already Started,weblink 1 November 2022, The New York Times, 29 October 2022, November 1, 2022,weblink live, These hazards include radiation, impactor events, and the wide range in temperatures on the surface.Mars Odyssey found what appear to be natural caves near the volcano Arsia Mons. It has been speculated that settlers could benefit from the shelter that these or similar structures could provide from radiation and micrometeoroids. Geothermal energy is also suspected in the equatorial regions.JOURNAL, 1997JBIS...50..187F,weblink Martyn J., Fogg, 1997, The utility of geothermal energy on Mars, Journal of the British Interplanetary Society, 49, 403–22, August 12, 2009, September 27, 2013,weblink" title="web.archive.org/web/20130927111139weblink">weblink live, A team of researchers which presented at Geological Society of America Connects 2022 identified some 139 caves worth exploring as potential shelters. Each was within {{convert|60|miles|km|-1}} of a location ideal for use as a landing site and had been imaged in high-resolution by HiRISE.

Lava tubes

Several possible Martian lava tube skylights have been located on the flanks of Arsia Mons. Earth based examples indicate that some should have lengthy passages offering complete protection from radiation and be relatively easy to seal using on-site materials, especially in small subsections.WEB,weblink THEMIS Observes Possible Cave Skylights on Mars, G. E., Cushing, T. N., Titus, J. J., Wynne1, P. R., Christensen, 2010-06-18, September 15, 2011,weblink" title="web.archive.org/web/20110915195653weblink">weblink live,

Hellas Planitia

Hellas Planitia is the lowest lying plain below the Martian geodetic datum. The atmospheric pressure is relatively higher in this place when compared to the rest of Mars.

Planetary protection

{{see also|Planetary protection}}Robotic spacecraft to Mars are required to be sterilized, to have at most 300,000 spores on the exterior of the craft—and more thoroughly sterilized if they contact "special regions" containing water,Queens University Belfast scientist helps NASA Mars project {{Webarchive|url=https://web.archive.org/web/20191026125803weblink |date=October 26, 2019 }} "No-one has yet proved that there is deep groundwater on Mars, but it is plausible as there is certainly surface ice and atmospheric water vapour, so we wouldn't want to contaminate it and make it unusable by the introduction of micro-organisms."COSPAR PLANETARY PROTECTION POLICY {{webarchive|url=https://web.archive.org/web/20130306111646weblink |date=2013-03-06 }} (20 October 2002; As Amended to 24 March 2011) otherwise there is a risk of contaminating not only the life-detection experiments but possibly the planet itself.It is impossible to sterilize human missions to this level, as humans are host to typically a hundred trillion microorganisms of thousands of species of the human microbiome, and these cannot be removed while preserving the life of the human. Containment seems the only option, but it is a major challenge in the event of a hard landing (i.e. crash).When Biospheres Collide – a history of NASA's Planetary Protection Programs {{Webarchive|url=https://web.archive.org/web/20190714112103weblink |date=July 14, 2019 }}, Michael Meltzer, May 31, 2012, see Chapter 7, Return to Mars – final section: "Should we do away with human missions to sensitive targets" There have been several planetary workshops on this issue, but with no final guidelines for a way forward yet.Johnson, James E. "Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Goals and Scope." (2015) {{Webarchive|url=https://web.archive.org/web/20191026125720weblink |date=October 26, 2019 }} Human explorers would also be vulnerable to back contamination to Earth if they become carriers of microorganisms should Mars have life.Safe on Mars page 37 {{Webarchive|url=https://web.archive.org/web/20150906050040weblink |date=September 6, 2015 }} "Martian biological contamination may occur if astronauts breathe contaminated dust or if they contact material that is introduced into their habitat. If an astronaut becomes contaminated or infected, it is conceivable that he or she could transmit Martian biological entities or even disease to fellow astronauts, or introduce such entities into the biosphere upon returning to Earth. A contaminated vehicle or item of equipment returned to Earth could also be a source of contamination."

Ethical, political and legal challenges

It is unforeseen how the first human landing on Mars will change the current policies regarding the exploration of space and occupancy of celestial bodies. In the 1967 United Nations Outer Space Treaty, it was determined that no country may take claim to space or its inhabitants. Since the planet Mars offers a challenging environment and dangerous obstacles for humans to overcome, the laws and culture on the planet will most likely be very different from those on Earth.Szocik, Konrad, Kateryna Lysenko-Ryba, Sylwia BanaÅ›, and Sylwia Mazur. "Political and Legal Challenges in a Mars Colony." Space Policy (2016): n. pag. Web. 24 Oct. 2016. With Elon Musk announcing his plans for travel to Mars, it is uncertain how the dynamic of a private company possibly being the first to put a human on Mars will play out on a national and global scale.Commercial Space Exploration: Ethics, Policy and Governance, 2015. Print.
NASA had to deal with several cuts in funding. During the presidency of Barack Obama, the objective for NASA to reach Mars was pushed to the background.WEB,weblink President Obama's Space Legacy: Mars, Private Spaceflight and More, Space.com, January 20, 2017, April 5, 2018, April 6, 2018,weblink live, In 2017, president Donald Trump promised to return humans to the Moon and eventually Mars,WEB,weblink NASA.gov, December 11, 2017, April 5, 2018, April 28, 2018,weblink live, and increased the NASA budget by $1.1 billion,WEB,weblink Trump, Congress approve largest U.S. Research spending increase in a decade, April 5, 2018, March 23, 2018,weblink" title="web.archive.org/web/20180323235214weblink">weblink live, to mostly focus on development of the new Space Launch System.WEB,weblink Bigger Than Saturn, Bound for Deep Space, James R., Chiles, Airspacemag.com, 2 January 2018, December 12, 2019,weblink live, WEB,weblink Finally, some details about how NASA actually plans to get to Mars, Arstechnica.com, March 28, 2017, 2 January 2018, July 13, 2019,weblink live,

Colonialism

Space colonization in general has been discussed as continuation of imperialism and colonialism,NEWS, How imperialism shaped the race to the moon,weblink The Washington Post, 19 September 2019, 22 July 2019, Gabrielle Cornish, en, July 23, 2019,weblink live, especially regarding Mars colonial decision making and reasons for colonial laborWEB, Against Mars-a-Lago: Why SpaceX's Mars colonization plan should terrify you,weblink Salon.com, 20 September 2019, 8 October 2017, Keith A. Spencer, en, September 19, 2019,weblink live, and land exploitation have been questioned with postcolonial critique. Seeing the need for inclusiveWEB, Rethinking the Narrative of Mars Colonisation,weblink Other Sociologist, 20 September 2019, 26 March 2015, Zuleyka Zevallos, en, December 11, 2019,weblink live, and democratic participation and implementation of any space and Mars exploration, infrastructure, or colonialization, many have called for dramatic sociological reforms and guarantees to prevent racism, sexism, and other forms of prejudice.WEB, Keep the Red Planet Red,weblink Jacobin (magazine), Jacobin, 20 September 2019, 2 May 2017, Keith A. Spencer, en, November 3, 2019,weblink live, The narrative of space exploration as a "New Frontier" has been criticized as unreflected continuation of settler colonialism and manifest destiny, continuing the narrative of colonial exploration as fundamental to the assumed human nature.WEB, The racist language of space exploration,weblink The Outline, 20 September 2019, 14 August 2018, Caroline Haskins, en, October 16, 2019,weblink live, WEB, When discussing Humanity's next move to space, the language we use matters.,weblink Scientific American, 20 September 2019, 26 March 2015, DNLee, en, September 14, 2019,weblink live, WEB, 2018-11-09, We need to change the way we talk about space exploration, Nadia, Drake, Nadia Drake, National Geographic, 2019-10-19,weblink October 16, 2019,weblink dead, The predominant perspective of territorial colonization in space has been called surfacism, especially comparing advocacy for colonization of Mars opposed to Venus.WEB, Tickle, Glen, A Look Into Whether Humans Should Try to Colonize Venus Instead of Mars, Laughing Squid, 2015-03-05,weblink 2021-09-01, September 1, 2021,weblink live, NEWS, Colonization of the Venusian Clouds: Is 'Surfacism' Clouding Our Judgement?,weblink Visionlearning Blog, 20 September 2019, 14 March 2017, David Warmflash, en, December 11, 2019,weblink live,
missing image!
- NASA Artemis Gateway logo.png -
The logo and name of the Lunar Gateway references the St. Louis
Gateway Arch, associating Mars with the American (frontier]].WEB,weblink NASA Reveals New Gateway Logo for Artemis Lunar Orbit Way Station, Space.com, September 18, 2019, 2020-06-28, Robert Z. Pearlman, June 28, 2020,weblink live, |thumb|left)

Dangers to pregnancy

One possible ethical challenge that space travelers might face is that of pregnancy during the trip. According to NASA's policies, it is forbidden for members of the crew to engage in sex in space. NASA wants its crew members to treat each other like coworkers would in a professional environment. A pregnant member on a spacecraft is dangerous to all those aboard. The pregnant woman and child would need additional nutrition from the rations aboard, as well as special treatment and care. The pregnancy would impinge on the pregnant crew member's duties and abilities. It is still not fully known how the environment in a spacecraft would affect the development of a child aboard. It is known however that a fetus would be more susceptible to solar radiation in space, which would likely have a negative effect on its cells and genetics.Minkel, JR. "Sex and Pregnancy on Mars: A Risky Proposition." Space.com. Space.com, 11 Feb. 2011. Web. 09 Dec. 2016. During a long trip to Mars, it is likely that members of craft may engage in sex due to their stressful and isolated environment.JOURNAL, 10.1186/s40504-016-0043-5, Mars ain't the kind of place to raise your kid: Ethical implications of pregnancy on missions to colonize other planets, 2016, Schuster, Haley, Peck, Steven L., Life Sciences, Society and Policy, 12, 1, 10, 27558392, 4996799, free,

Advocacy

File:Buzz Aldrin.jpg|thumb|Buzz Aldrin, the Apollo 11Apollo 11Mars colonization is advocated by several non-governmental groups for a range of reasons and with varied proposals. One of the oldest groups is the Mars Society who promote a NASA program to accomplish human exploration of Mars and have set up Mars analog research stations in Canada and the United States. Mars to Stay advocates recycling emergency return vehicles into permanent settlements as soon as initial explorers determine permanent habitation is possible.Elon Musk founded SpaceX with the long-term goal of developing the technologies that will enable a self-sustaining human colony on Mars.NEWS, Chang, Kenneth, Elon Musk's Plan: Get Humans to Mars, and Beyond,weblink 27 September 2016, The New York Times, 27 September 2016, September 29, 2016,weblink" title="web.archive.org/web/20160929095051weblink">weblink live, WEB,weblink SpaceX Billionaire Elon Musk Wants A Martian Colony Of 80,000 People, Alex Knapp, 27 November 2012, Forbes, 12 June 2015, August 15, 2017,weblink live, Richard Branson, in his lifetime, is "determined to be a part of starting a population on Mars. I think it is absolutely realistic. It will happen... I think over the next 20 years," [from 2012] "we will take literally hundreds of thousands of people to space and that will give us the financial resources to do even bigger things".WEB,weblink Richard Branson on space travel: "I'm determined to start a population on Mars", 18 September 2012, cbsnews.com, 2019-06-15, June 16, 2019,weblink live, Author Robert Zubrin has been a major advocate for Mars exploration and colonization for many years. He is a member of the Mars society and has authored several fiction and nonfiction books about the subject. In 1996 he wrote (The Case for Mars|The Case for Mars: The Plan to Settle the Red Planet and Why We Must). He continues to advocate for Mars and space exploration with his most recent book being (The Case for Space: How the Revolution in Spaceflight Opens Up a Future of Limitless Possibility).In June 2013, Buzz Aldrin, American engineer and former astronaut, and the second person to walk on the Moon, wrote an opinion, published in The New York Times, supporting a human mission to Mars and viewing the Moon "not as a destination but more a point of departure, one that places humankind on a trajectory to homestead Mars and become a two-planet species".NEWS, Aldrin, Buzz, The Call of Mars,weblink 13 June 2013, The New York Times, 17 June 2013, July 17, 2019,weblink live, In August 2015, Aldrin, in association with the Florida Institute of Technology, presented a "master plan", for NASA consideration, for astronauts, with a "tour of duty of ten years", to colonize Mars before the year 2040.NEWS, Dunn, Marcia, Buzz Aldrin joins university, forming 'master plan' for Mars,weblink 27 August 2015, AP News, 30 August 2015,weblink" title="web.archive.org/web/20150904072417weblink">weblink 4 September 2015, dead, There are critics of the project of Mars colonization. American political scientist Daniel Deudney has argued that a fully developed Mars colony represents an existential threat to humans remaining on Earth. His book, Dark Skies: Space Expansionism, Planetary Geopolitics, and the Ends of Humanity, challenges the widespread view among advocates that a Mars colony would be friendly to the interests of humans still on Earth.BOOK, Deudney, Daniel,weblink Dark Skies: Space Expansionism, Planetary Geopolitics, and the Ends of Humanity, 2020-03-02, Oxford University Press, 978-0-19-090334-3, Oxford, New York, According to Deudney, this is merely an assumption based on the largely unexamined claim that a future Mars colony will be a straightforward extension of civilization on Earth, rather than a completely new kind of civilization with distinct goals, values, fears and desires.

In fiction

A few instances in fiction provide detailed descriptions of Mars colonization. They include:

Interactive Mars map

{{Mars map}}

See also

{{Div col|colwidth=30em}}
  • {{annotated link|Astrobotany}}
  • {{annotated link|Climate of Mars}}
  • {{annotated link|Colonization of the asteroid belt}}
  • {{annotated link|Colonization of the Moon}}
  • {{annotated link|Colonization of Venus}}
  • {{annotated link|Effect of spaceflight on the human body}}
  • {{annotated link|Exploration of Mars}}
  • {{annotated link|Health threat from cosmic rays}}
  • {{annotated link|Human mission to Mars}}
  • {{annotated link|Human outpost}}
  • {{annotated link|In situ resource utilization}}
  • {{annotated link|Inspiration Mars}}
  • {{annotated link|Space architecture}}
  • {{annotated link|SpaceX Mars transportation infrastructure}}
  • {{annotated link|Life on Mars}}
  • List of crewed Mars mission plans
  • {{annotated link|Mars analog habitat}}
  • {{annotated link|Mars Desert Research Station}}
  • {{annotated link|Mars habitat}}
  • Mars Outpost
  • {{annotated link|Mars race}}
  • Marsification
  • {{annotated link|Martian}}
  • {{annotated link|Martian soil}}
  • {{annotated link|Vision for Space Exploration}}
  • {{annotated link|NewSpace}}
  • {{annotated link|Terraforming of Mars}}
  • {{annotated link|The Case for Mars|The Case for Mars}}
  • {{annotated link|Water on Mars}}
{{div col end}}

References

{{Reflist|30em}}

Further reading

  • BOOK, Mission to Mars: My Vision for Space Exploration, National Geographic Books, Buzz Aldrin and Leonard David, 2013, 978-1-4262-1017-4, Mission to Mars: My Vision for Space Exploration, (at BuzzAldrin.com)
  • Robert Zubrin, (The Case for Mars|The Case for Mars: The Plan to Settle the Red Planet and Why We Must), Simon & Schuster/Touchstone, 1996, {{ISBN|0-684-83550-9}}
  • Frank Crossman and Robert Zubrin, editors, On to Mars: Colonizing a New World. Apogee Books Space Series, 2002, {{ISBN|1-896522-90-4}}.
  • Frank Crossman and Robert Zubrin, editors, On to Mars 2: Exploring and Settling a New World. Apogee Books Space Series, 2005, {{ISBN|978-1-894959-30-8}}.
  • Resource Utilization Concepts for MoonMars; By Iris Fleischer, Olivia Haider, Morten W. Hansen, Robert Peckyno, Daniel Rosenberg and Robert E. Guinness; 30 September 2003; IAC Bremen, 2003 (29 Sept–03 Oct 2003) and MoonMars Workshop (26–28 Sept 2003, Bremen). Accessed on 18 January 2010
  • MARTIAN OUTPOST: The Challenges of Establishing a Human Settlement on Mars {{Webarchive|url=https://web.archive.org/web/20160603215417weblink |date=June 3, 2016 }}; by Erik Seedhouse; Praxis Publishing; 2009; {{ISBN|978-0-387-98190-1}}. Also see weblink, weblink
  • weblink" title="web.archive.org/web/20170208034458weblink">Ice, mineral-rich soil could support human outpost on Mars; by Sharon Gaudin; 27 June 2008; IDG News Service

External links

{{Commons category|Colonization of Mars}}{{wikiversity|Should we colonize Mars?}}{{Spoken Wikipedia|date=2021-04-08|En-Colonization of Mars-article.ogg}} {{Human missions to Mars}}{{Mars}}{{Space colonization}}{{Use American English|date=January 2014}}

- content above as imported from Wikipedia
- "Colonization of Mars" does not exist on GetWiki (yet)
- time: 5:02am EDT - Sat, May 18 2024
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 23 MAY 2022
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
CONNECT