SUPPORT THE WORK

GetWiki

genetic engineering

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
genetic engineering
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{About||a non-technical introduction to the topic of genetics|Introduction to genetics|the song by Orchestral Manoeuvres in the Dark|Genetic Engineering (song)}}{{pp-pc1}}{{pp-move-indef|small=yes}}{{short description|Direct manipulation of an organism's genome using biotechnology}}{{good article}}{{Use dmy dates|date=July 2012}}{{Genetic engineering sidebar}}Genetic engineering, also called genetic modification or genetic manipulation, is the direct manipulation of an organism's genes using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. A construct is usually created and used to insert this DNA into the host organism. The first recombinant DNA molecule was made by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome.An organism that is generated through genetic engineering is considered to be genetically modified (GM) and the resulting entity is a genetically modified organism (GMO). The first GMO was a bacterium generated by Herbert Boyer and Stanley Cohen in 1973. Rudolf Jaenisch created the first GM animal when he inserted foreign DNA into a mouse in 1974. The first company to focus on genetic engineering, Genentech, was founded in 1976 and started the production of human proteins. Genetically engineered human insulin was produced in 1978 and insulin-producing bacteria were commercialised in 1982. Genetically modified food has been sold since 1994, with the release of the Flavr Savr tomato. The Flavr Savr was engineered to have a longer shelf life, but most current GM crops are modified to increase resistance to insects and herbicides. GloFish, the first GMO designed as a pet, was sold in the United States in December 2003. In 2016 salmon modified with a growth hormone were sold.Genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. In research GMOs are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. By knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. As well as producing hormones, vaccines and other drugs genetic engineering has the potential to cure genetic diseases through gene therapy. The same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products.The rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. This has been present since its early use; the first field trials were destroyed by anti-GM activists. Although there is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, GM food safety is a leading concern with critics. Gene flow, impact on non-target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. These concerns have led to the development of a regulatory framework, which started in 1975. It has led to an international treaty, the Cartagena Protocol on Biosafety, that was adopted in 2000. Individual countries have developed their own regulatory systems regarding GMOs, with the most marked differences occurring between the US and Europe.JOURNAL, Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F, Terminology for biorelated polymers and applications (IUPAC Recommendations 2012), Pure and Applied Chemistry, 2012, 84, 2, 377–410, 10.1351/PAC-REC-10-12-04, | align = right| width = 30%}}

Overview

File:Breeding transgenesis cisgenesis.svg|thumb|Comparison of conventional plant breeding with transgenic and upright=1.7Genetic engineering is a process that alters the genetic structure of an organism by either removing or introducing DNA. Unlike traditional animal and plant breeding, which involves doing multiple crosses and then selecting for the organism with the desired phenotype, genetic engineering takes the gene directly from one organism and inserts it in the other. This is much faster, can be used to insert any genes from any organism (even ones from different domains) and prevents other undesirable genes from also being added.WEB,weblink How does GM differ from conventional plant breeding?, royalsociety.org, en-gb, 2017-11-14, Genetic engineering could potentially fix severe genetic disorders in humans by replacing the defective gene with a functioning one.BOOK, Ethical Issues in Scientific Research: An Anthology, Erwin, Edward, Gendin, Sidney, Kleiman, Lowell, vanc, 2015-12-22, Routledge, 978-1-134-81774-0, 338, en, It is an important tool in research that allows the function of specific genes to be studied.JOURNAL, Alexander DR, Uses and abuses of genetic engineering, Postgraduate Medical Journal, 79, 931, 249–51, May 2003, 12782769, 1742694, 10.1136/pmj.79.931.249, Drugs, vaccines and other products have been harvested from organisms engineered to produce them.JOURNAL, Nielsen J, Production of biopharmaceutical proteins by yeast: advances through metabolic engineering, Bioengineered, 4, 4, 207–11, 2013-07-01, 23147168, 3728191, 10.4161/bioe.22856, Crops have been developed that aid food security by increasing yield, nutritional value and tolerance to environmental stresses.JOURNAL, Qaim M, Kouser S, Genetically modified crops and food security, PLOS ONE, 8, 6, e64879, 2013-06-05, 23755155, 3674000, 10.1371/journal.pone.0064879, 2013PLoSO...864879Q, The DNA can be introduced directly into the host organism or into a cell that is then fused or hybridised with the host.JOURNAL, Directive on the release of genetically modified organisms (GMOs) Directive 2001/18/EC ANNEX I A, Official Journal of the European Communities, 12 March 2001, The European Parliament and the council of the European Union,weblink This relies on recombinant nucleic acid techniques to form new combinations of heritable genetic material followed by the incorporation of that material either indirectly through a vector system or directly through micro-injection, macro-injection or micro-encapsulation.Staff Economic Impacts of Genetically Modified Crops on the Agri-Food Sector; p. 42 Glossary – Term and Definitions {{webarchive|url=https://web.archive.org/web/20130514202621weblink |date=14 May 2013 }} The European Commission Directorate-General for Agriculture, "Genetic engineering: The manipulation of an organism's genetic endowment by introducing or eliminating specific genes through modern molecular biology techniques. A broad definition of genetic engineering also includes selective breeding and other means of artificial selection.", Retrieved 5 November 2012Genetic engineering does not normally include traditional breeding, in vitro fertilisation, induction of polyploidy, mutagenesis and cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process. However, some broad definitions of genetic engineering include selective breeding. Cloning and stem cell research, although not considered genetic engineering,WEB, Is Livestock Cloning Another Form of Genetic Engineering?, Van Eenennaam, Alison, vanc, agbiotech,weblink dead,weblink" title="web.archive.org/web/20110511121055weblink">weblink 11 May 2011, are closely related and genetic engineering can be used within them.JOURNAL, Suter DM, Dubois-Dauphin M, Krause KH, Genetic engineering of embryonic stem cells, Swiss Medical Weekly, 136, 27–28, 413–5, July 2006, 16897894,weblinkweblink" title="web.archive.org/web/20110707003215weblink">weblink dmy-all, dead, 7 July 2011, Synthetic biology is an emerging discipline that takes genetic engineering a step further by introducing artificially synthesised material into an organism.JOURNAL, Andrianantoandro E, Basu S, Karig DK, Weiss R, Synthetic biology: new engineering rules for an emerging discipline, Molecular Systems Biology, 2, 2006.0028, 2006.0028, 16 May 2006, 16738572, 1681505, 10.1038/msb4100073, Such synthetic DNA as Artificially Expanded Genetic Information System and Hachimoji DNA is made in this new field.Plants, animals or micro organisms that have been changed through genetic engineering are termed genetically modified organisms or GMOs.WEB,weblink What is genetic modification (GM)?, CSIRO, If genetic material from another species is added to the host, the resulting organism is called transgenic. If genetic material from the same species or a species that can naturally breed with the host is used the resulting organism is called cisgenic.JOURNAL, 10.1007/s11540-008-9097-y, Cisgenesis, a New Tool for Traditional Plant Breeding, Should be Exempted from the Regulation on Genetically Modified Organisms in a Step by Step Approach, 2008, Jacobsen E, Schouten HJ, Potato Research, 51, 75–88,weblink If genetic engineering is used to remove genetic material from the target organism the resulting organism is termed a knockout organism.JOURNAL, Capecchi MR, Generating mice with targeted mutations, Nature Medicine, 7, 10, 1086–90, October 2001, 11590420, 10.1038/nm1001-1086, In Europe genetic modification is synonymous with genetic engineering while within the United States of America and Canada genetic modification can also be used to refer to more conventional breeding methods.Staff Biotechnology – Glossary of Agricultural Biotechnology Terms {{webarchive|url=https://web.archive.org/web/20140830102928weblink |date=30 August 2014 }} United States Department of Agriculture, "Genetic modification: The production of heritable improvements in plants or animals for specific uses, via either genetic engineering or other more traditional methods. Some countries other than the United States use this term to refer specifically to genetic engineering.", Retrieved 5 November 2012WEB, Genetically Engineered Foods, James H., Maryanski, vanc, Center for Food Safety and Applied Nutrition at the Food and Drug Administration, 19 October 1999,weblink Staff (28 November 2005) Health Canada – The Regulation of Genetically Modified Food Glossary definition of Genetically Modified: "An organism, such as a plant, animal or bacterium, is considered genetically modified if its genetic material has been altered through any method, including conventional breeding. A 'GMO' is a genetically modified organism.", Retrieved 5 November 2012

History

Humans have altered the genomes of species for thousands of years through selective breeding, or artificial selectionBOOK, Domestication, {{google books, y, WGDYHvOHwmwC, |first=Clive |last=Root| name-list-format = vanc |year=2007|publisher=Greenwood Publishing Groups}}{{rp|1}}BOOK, Domestication of Plants in the Old World: The origin and spread of plants in the old world, {{google books, y, tc6vr0qzk_4C, |first1=Daniel |last1=Zohary |first2=Maria |last2=Hopf |first3=Ehud |last3=Weiss | name-list-format = vanc |year=2012|publisher=Oxford University Press}}{{rp|1}} as contrasted with natural selection. More recently, mutation breeding has used exposure to chemicals or radiation to produce a high frequency of random mutations, for selective breeding purposes. Genetic engineering as the direct manipulation of DNA by humans outside breeding and mutations has only existed since the 1970s. The term "genetic engineering" was first coined by Jack Williamson in his science fiction novel Dragon's Island, published in 1951BOOK, Stableford, Brian M., vanc, Historical dictionary of science fiction literature, 133, 2004, 978-0-8108-4938-9, {{google books, y, nzmIPZg5xicC, 9, }} – one year before DNA's role in heredity was confirmed by Alfred Hershey and Martha Chase,JOURNAL, Hershey AD, Chase M, Independent functions of viral protein and nucleic acid in growth of bacteriophage, The Journal of General Physiology, 36, 1, 39–56, May 1952, 12981234, 2147348, 10.1085/jgp.36.1.39, and two years before James Watson and Francis Crick showed that the DNA molecule has a double-helix structure – though the general concept of direct genetic manipulation was explored in rudimentary form in Stanley G. Weinbaum's 1936 science fiction story Proteus Island.ENCYCLOPEDIA,weblink Genetic Engineering, 2 April 2015, Encyclopedia of Science Fiction, BOOK,weblink Modern Concepts in Nanotechnology, Volume 5, 2008, 978-81-8356-296-6, Discovery Publishing House, Shiv Kant Prasad, Ajay Dash, File:Jaenisch 2003 by Sam Ogden.jpg|thumb|upright|In 1974 Rudolf Jaenisch created a genetically modified mousegenetically modified mouseIn 1972, Paul Berg created the first recombinant DNA molecules by combining DNA from the monkey virus SV40 with that of the lambda virus.JOURNAL, Jackson DA, Symons RH, Berg P, Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli, Proceedings of the National Academy of Sciences of the United States of America, 69, 10, 2904–9, October 1972, 4342968, 389671, 10.1073/pnas.69.10.2904, David A. Jackson Robert H. Symons and Paul Berg, 1972PNAS...69.2904J, In 1973 Herbert Boyer and Stanley Cohen created the first transgenic organism by inserting antibiotic resistance genes into the plasmid of an Escherichia coli bacterium.WEB, History of Genetics: Genetic Engineering Timeline, Arnold, Paul, vanc, 2009,weblink JOURNAL, Gutschi S, Hermann W, Stenzl W, Tscheliessnigg KH, [Displacement of electrodes in pacemaker patients (author's transl)], Zentralblatt für Chirurgie, 104, 2, 100–4, 1 May 1973, 433482, 10.1073/pnas.70.5.1293, 4576014, 1973PNAS...70.1293C, A year later Rudolf Jaenisch created a transgenic mouse by introducing foreign DNA into its embryo, making it the world’s first transgenic animalJOURNAL, Jaenisch R, Mintz B, Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA, Proceedings of the National Academy of Sciences of the United States of America, 71, 4, 1250–4, April 1974, 4364530, 388203, 10.1073/pnas.71.4.1250, These achievements led to concerns in the scientific community about potential risks from genetic engineering, which were first discussed in depth at the Asilomar Conference in 1975. One of the main recommendations from this meeting was that government oversight of recombinant DNA research should be established until the technology was deemed safe.JOURNAL, Berg P, Baltimore D, Brenner S, Roblin RO, Singer MF, Summary statement of the Asilomar conference on recombinant DNA molecules, Proceedings of the National Academy of Sciences of the United States of America, 72, 6, 1981–4, June 1975, 806076, 432675, 10.1073/pnas.72.6.1981, 1975PNAS...72.1981B, WEB, NIH Guidelines for research involving recombinant DNA molecules, Office of Biotechnology Activities, U.S. Department of Health and Human Services,weblinkweblink" title="web.archive.org/web/20120910070047weblink">weblink 10 September 2012, dead, In 1976 Genentech, the first genetic engineering company, was founded by Herbert Boyer and Robert Swanson and a year later the company produced a human protein (somatostatin) in E.coli. Genentech announced the production of genetically engineered human insulin in 1978.JOURNAL, Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD, Expression in Escherichia coli of chemically synthesized genes for human insulin, Proceedings of the National Academy of Sciences of the United States of America, 76, 1, 106–10, January 1979, 85300, 382885, 10.1073/pnas.76.1.106, 1979PNAS...76..106G, In 1980, the U.S. Supreme Court in the Diamond v. Chakrabarty case ruled that genetically altered life could be patented.JOURNAL,weblink Diamond V Chakrabarty, 447, US Supreme Court Cases from Justia & Oyez, Supreme.justia.com, 16 June 1980, 17 July 2010, 303, The insulin produced by bacteria was approved for release by the Food and Drug Administration (FDA) in 1982.NEWS,weblink Artificial Genes, TIME, 15 November 1982, 17 July 2010, In 1983, a biotech company, Advanced Genetic Sciences (AGS) applied for U.S. government authorisation to perform field tests with the ice-minus strain of Pseudomonas syringae to protect crops from frost, but environmental groups and protestors delayed the field tests for four years with legal challenges.JOURNAL, Bratspies, Rebecca, vanc, 2007, Some Thoughts on the American Approach to Regulating Genetically Modified Organisms, 1017832, Kansas Journal of Law & Public Policy, 16, 3, 101–31, In 1987, the ice-minus strain of P. syringae became the first genetically modified organism (GMO) to be released into the environmentBBC News 14 June 2002 GM crops: A bitter harvest? when a strawberry field and a potato field in California were sprayed with it.Thomas H. Maugh II for the Los Angeles Times. 9 June 1987. Altered Bacterium Does Its Job : Frost Failed to Damage Sprayed Test Crop, Company Says Both test fields were attacked by activist groups the night before the tests occurred: "The world's first trial site attracted the world's first field trasher".The first field trials of genetically engineered plants occurred in France and the US in 1986, tobacco plants were engineered to be resistant to herbicides.WEB, James, Clive, vanc, Global Review of the Field Testing and Commercialization of Transgenic Plants: 1986 to 1995,weblink The International Service for the Acquisition of Agri-biotech Applications, 17 July 2010, 1996, The People’s Republic of China was the first country to commercialise transgenic plants, introducing a virus-resistant tobacco in 1992.JOURNAL, James, Clive, vanc, 1997, Global Status of Transgenic Crops in 1997, ISAAA Briefs No. 5., 31,weblink In 1994 Calgene attained approval to commercially release the first genetically modified food, the Flavr Savr, a tomato engineered to have a longer shelf life.JOURNAL, 10.3733/ca.v054n04p6, The case of the FLAVR SAVR tomato, 2000, Bruening G, Lyons JM, California Agriculture, 54, 4, 6–7, In 1994, the European Union approved tobacco engineered to be resistant to the herbicide bromoxynil, making it the first genetically engineered crop commercialised in Europe.MAGAZINE, Transgenic tobacco is European first, 18 June 1994, MacKenzie, Debora, vanc,weblink New Scientist, In 1995, Bt Potato was approved safe by the Environmental Protection Agency, after having been approved by the FDA, making it the first pesticide producing crop to be approved in the US.Genetically Altered Potato Ok'd For Crops Lawrence Journal-World – 6 May 1995 In 2009 11 transgenic crops were grown commercially in 25 countries, the largest of which by area grown were the US, Brazil, Argentina, India, Canada, China, Paraguay and South Africa.Global Status of Commercialized Biotech/GM Crops: 2009 ISAAA Brief 41-2009, 23 February 2010. Retrieved 10 August 2010In 2010, scientists at the J. Craig Venter Institute created the first synthetic genome and inserted it into an empty bacterial cell. The resulting bacterium, named Mycoplasma laboratorium, could replicate and produce proteins.JOURNAL, Pennisi E, Genomics. Synthetic genome brings new life to bacterium, Science, 328, 5981, 958–9, May 2010, 20488994, 10.1126/science.328.5981.958, JOURNAL, Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC, 6, Creation of a bacterial cell controlled by a chemically synthesized genome, Science, 329, 5987, 52–6, July 2010, 20488990, 10.1126/science.1190719, 2010Sci...329...52G, 10.1.1.167.1455, Four years later this was taken a step further when a bacterium was developed that replicated a plasmid containing a unique base pair, creating the first organism engineered to use an expanded genetic alphabet.JOURNAL, Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Corrêa IR, Romesberg FE, A semi-synthetic organism with an expanded genetic alphabet, Nature, 509, 7500, 385–8, May 2014, 24805238, 4058825, 10.1038/nature13314, 2014Natur.509..385M, JOURNAL, Thyer R, Ellefson J, Synthetic biology: New letters for life's alphabet, Nature, 509, 7500, 291–2, May 2014, 24805244, 10.1038/nature13335, 2014Natur.509..291T, In 2012, Jennifer Doudna and Emmanuelle Charpentier collaborated to develop the CRISPR/Cas9 system,NEWS,weblink Jennifer Doudna, a Pioneer Who Helped Simplify Genome Editing, Pollack, Andrew, vanc, 2015-05-11, The New York Times, 2017-11-15, JOURNAL, Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 6096, 816–21, August 2012, 22745249, 6286148, 10.1126/science.1225829, 2012Sci...337..816J, a technique which can be used to easily and specifically alter the genome of almost any organism.JOURNAL, Ledford H, CRISPR: gene editing is just the beginning, Nature, 531, 7593, 156–9, March 2016, 26961639, 10.1038/531156a, 2016Natur.531..156L,

Process

File:Master Mix with Primers form PCR.jpg|thumb|upright|Polymerase chain reaction is a powerful tool used in molecular cloningmolecular cloningCreating a GMO is a multi-step process. Genetic engineers must first choose what gene they wish to insert into the organism. This is driven by what the aim is for the resultant organism and is built on earlier research. Genetic screens can be carried out to determine potential genes and further tests then used to identify the best candidates. The development of microarrays, transcriptomics and genome sequencing has made it much easier to find suitable genes.BOOK,weblink Current Technologies in Plant Molecular Breeding: A Guide Book of Plant Molecular Breeding for Researchers, Koh, Hee-Jong, Kwon, Suk-Yoon, Thomson, Michael, vanc, 2015-08-26, Springer, 978-94-017-9996-6, 242, en, Luck also plays its part; the round-up ready gene was discovered after scientists noticed a bacterium thriving in the presence of the herbicide.NEWS,weblink How to Make a GMO, 2015-08-09, Science in the News, 2017-04-29, en-US,

Gene isolation and cloning

The next step is to isolate the candidate gene. The cell containing the gene is opened and the DNA is purified.BOOK,weblink An Introduction to Genetic Engineering, Nicholl, Desmond S.T., 2008-05-29, Cambridge University Press, 978-1-139-47178-7, 34, en, The gene is separated by using restriction enzymes to cut the DNA into fragmentsBOOK, Alberts B, Johnson A, Lewis J, etal, Isolating, Cloning, and Sequencing DNA., 4th, New York, Garland Science, 2002,weblink 8, or polymerase chain reaction (PCR) to amplify up the gene segment.JOURNAL, Kaufman RI, Nixon BT, Use of PCR to isolate genes encoding sigma54-dependent activators from diverse bacteria, Journal of Bacteriology, 178, 13, 3967–70, July 1996, 8682806, 232662, 10.1128/jb.178.13.3967-3970.1996, These segments can then be extracted through gel electrophoresis. If the chosen gene or the donor organism's genome has been well studied it may already be accessible from a genetic library. If the DNA sequence is known, but no copies of the gene are available, it can also be artificially synthesised.JOURNAL, Liang J, Luo Y, Zhao H, Synthetic biology: putting synthesis into biology, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3, 1, 7–20, 2011, 21064036, 3057768, 10.1002/wsbm.104, Once isolated the gene is ligated into a plasmid that is then inserted into a bacterium. The plasmid is replicated when the bacteria divide, ensuring unlimited copies of the gene are available.WEB,weblink 5. The Process of Genetic Modification, www.fao.org, 2017-04-29, Before the gene is inserted into the target organism it must be combined with other genetic elements. These include a promoter and terminator region, which initiate and end transcription. A selectable marker gene is added, which in most cases confers antibiotic resistance, so researchers can easily determine which cells have been successfully transformed. The gene can also be modified at this stage for better expression or effectiveness. These manipulations are carried out using recombinant DNA techniques, such as restriction digests, ligations and molecular cloning.JOURNAL, Berg P, Mertz JE, Personal reflections on the origins and emergence of recombinant DNA technology, Genetics, 184, 1, 9–17, January 2010, 20061565, 2815933, 10.1534/genetics.109.112144,

Inserting DNA into the host genome

File:Genegun.jpg|left|thumb|upright|A gene gun uses biolisticsbiolisticsThere are a number of techniques used to insert genetic material into the host genome. Some bacteria can naturally take up foreign DNA. This ability can be induced in other bacteria via stress (e.g. thermal or electric shock), which increases the cell membrane's permeability to DNA; up-taken DNA can either integrate with the genome or exist as extrachromosomal DNA. DNA is generally inserted into animal cells using microinjection, where it can be injected through the cell's nuclear envelope directly into the nucleus, or through the use of viral vectors.JOURNAL, Chen I, Dubnau D, DNA uptake during bacterial transformation, Nature Reviews. Microbiology, 2, 3, 241–9, March 2004, 15083159, 10.1038/nrmicro844, In plants the DNA is often inserted using Agrobacterium-mediated recombination,BOOK,weblink Methods and Mechanisms for Genetic Manipulation of Plants, Animals, and Microorganisms, National Research Council (US) Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health, 2004-01-01, National Academies Press (US), en, taking advantage of the Agrobacteriums T-DNA sequence that allows natural insertion of genetic material into plant cells.JOURNAL, Gelvin SB, Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool, Microbiology and Molecular Biology Reviews, 67, 1, 16–37, table of contents, March 2003, 12626681, 150518, 10.1128/MMBR.67.1.16-37.2003, Other methods include biolistics, where particles of gold or tungsten are coated with DNA and then shot into young plant cells,BOOK, Graham, Head, Hull, Roger H, Tzotzos, George T., vanc, Genetically Modified Plants: Assessing Safety and Managing Risk, Academic Pr, London, 2009, 244, 978-0-12-374106-6, and electroporation, which involves using an electric shock to make the cell membrane permeable to plasmid DNA. Due to the damage caused to the cells and DNA the transformation efficiency of biolistics and electroporation is lower than agrobacterial transformation and microinjection.JOURNAL, DNA-Delivery Methods to Produce Transgenic Plants, Biotechnology(Faisalabad), 7, 3, 385–402, Behrooz, Darbani, Safar, Farajnia, Mahmoud, Toorchi, Saeed, Zakerbostanabad, Shahin, Noeparvar, C. Neal, Stewart, vanc, 2010, Science Alert, 10.3923/biotech.2008.385.402, As only a single cell is transformed with genetic material, the organism must be regenerated from that single cell. In plants this is accomplished through the use of tissue culture.JOURNAL, Tuomela M, Stanescu I, Krohn K, Validation overview of bio-analytical methods, Gene Therapy, 12 Suppl 1, S1, S131-8, October 2005, 16231045, 10.1038/sj.gt.3302627, BOOK,weblink Plant Cell and Tissue Culture, Narayanaswamy, S., 1994, Tata McGraw-Hill Education, 978-0-07-460277-5, vi, en, In animals it is necessary to ensure that the inserted DNA is present in the embryonic stem cells.BOOK,weblink Methods and Mechanisms for Genetic Manipulation of Plants, Animals, and Microorganisms, National Research Council (US) Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health, 2004, National Academies Press (US), en, Bacteria consist of a single cell and reproduce clonally so regeneration is not necessary. Selectable markers are used to easily differentiate transformed from untransformed cells. These markers are usually present in the transgenic organism, although a number of strategies have been developed that can remove the selectable marker from the mature transgenic plant.JOURNAL, Hohn B, Levy AA, Puchta H, Elimination of selection markers from transgenic plants, Current Opinion in Biotechnology, 12, 2, 139–43, April 2001, 11287227, 10.1016/S0958-1669(00)00188-9, File:Agrobacterium-tumefaciens.png|thumb|upright|A. tumefaciensA. tumefaciensFurther testing using PCR, Southern hybridization, and DNA sequencing is conducted to confirm that an organism contains the new gene.BOOK,weblink Genetic Engineering: Principles and Methods, Setlow, Jane K., vanc, 2002-10-31, Springer Science & Business Media, 978-0-306-47280-0, 109, en, These tests can also confirm the chromosomal location and copy number of the inserted gene. The presence of the gene does not guarantee it will be expressed at appropriate levels in the target tissue so methods that look for and measure the gene products (RNA and protein) are also used. These include northern hybridisation, quantitative RT-PCR, Western blot, immunofluorescence, ELISA and phenotypic analysis.JOURNAL, Deepak S, Kottapalli K, Rakwal R, Oros G, Rangappa K, Iwahashi H, Masuo Y, Agrawal G, Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes, Current Genomics, 8, 4, 234–51, June 2007, 18645596, 2430684, 10.2174/138920207781386960, The new genetic material can be inserted randomly within the host genome or targeted to a specific location. The technique of gene targeting uses homologous recombination to make desired changes to a specific endogenous gene. This tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. The frequency of gene targeting can be greatly enhanced through genome editing. Genome editing uses artificially engineered nucleases that create specific double-stranded breaks at desired locations in the genome, and use the cell’s endogenous mechanisms to repair the induced break by the natural processes of homologous recombination and nonhomologous end-joining. There are four families of engineered nucleases: meganucleases,JOURNAL, Grizot S, Smith J, Daboussi F, Prieto J, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G, Blanco FJ, Pâques F, Duchateau P, Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease, Nucleic Acids Research, 37, 16, 5405–19, September 2009, 19584299, 2760784, 10.1093/nar/gkp548, JOURNAL, Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D, Lyznik LA, Heritable targeted mutagenesis in maize using a designed endonuclease, The Plant Journal, 61, 1, 176–87, January 2010, 19811621, 10.1111/j.1365-313X.2009.04041.x, zinc finger nucleases,JOURNAL, Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF, High-frequency modification of plant genes using engineered zinc-finger nucleases, Nature, 459, 7245, 442–5, May 2009, 19404258, 2743854, 10.1038/nature07845, 2009Natur.459..442T, JOURNAL, Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Precise genome modification in the crop species Zea mays using zinc-finger nucleases, Nature, 459, 7245, 437–41, May 2009, 19404259, 10.1038/nature07992, 2009Natur.459..437S, transcription activator-like effector nucleases (TALENs),JOURNAL, Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF, Targeting DNA double-strand breaks with TAL effector nucleases, Genetics, 186, 2, 757–61, October 2010, 20660643, 2942870, 10.1534/genetics.110.120717, JOURNAL, Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B, TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain, Nucleic Acids Research, 39, 1, 359–72, January 2011, 20699274, 3017587, 10.1093/nar/gkq704, and the Cas9-guideRNA system (adapted from CRISPR).JOURNAL, Esvelt KM, Wang HH, Genome-scale engineering for systems and synthetic biology, Molecular Systems Biology, 9, 641, 2013, 23340847, 3564264, 10.1038/msb.2012.66, BOOK, Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB, Precision editing of large animal genomes, 80, 37–97, 2012, 23084873, 3683964, 10.1016/B978-0-12-404742-6.00002-8, 978-0-12-404742-6, Advances in Genetics, Advances in Genetics Volume 80, TALEN and CRISPR are the two most commonly used and each has its own advantages.JOURNAL, Malzahn A, Lowder L, Qi Y, Plant genome editing with TALEN and CRISPR, Cell & Bioscience, 7, 21, 2017-04-24, 28451378, 5404292, 10.1186/s13578-017-0148-4, TALENs have greater target specificity, while CRISPR is easier to design and more efficient. In addition to enhancing gene targeting, engineered nucleases can be used to introduce mutations at endogenous genes that generate a gene knockout.JOURNAL, Ekker SC, Zinc finger-based knockout punches for zebrafish genes, Zebrafish, 5, 2, 121–3, 2008, 18554175, 2849655, 10.1089/zeb.2008.9988, JOURNAL, Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R, Knockout rats via embryo microinjection of zinc-finger nucleases, Science, 325, 5939, 433, July 2009, 19628861, 2831805, 10.1126/science.1172447, 2009Sci...325..433G,

Applications

Genetic engineering has applications in medicine, research, industry and agriculture and can be used on a wide range of plants, animals and micro organisms. Bacteria, the first organisms to be genetically modified, can have plasmid DNA inserted containing new genes that code for medicines or enzymes that process food and other substrates.WEB,weblink Genetic Modification of Bacteria, Annenberg Foundation, Panesar, Pamit et al (2010) "Enzymes in Food Processing: Fundamentals and Potential Applications", Chapter 10, I K International Publishing House, {{ISBN|978-93-80026-33-6}} Plants have been modified for insect protection, herbicide resistance, virus resistance, enhanced nutrition, tolerance to environmental pressures and the production of edible vaccines.WEB,weblink GM traits list, International Service for the Acquisition of Agri-Biotech Applications, Most commercialised GMOs are insect resistant or herbicide tolerant crop plants.WEB,weblink ISAAA Brief 43-2011: Executive Summary, International Service for the Acquisition of Agri-Biotech Applications, Genetically modified animals have been used for research, model animals and the production of agricultural or pharmaceutical products. The genetically modified animals include animals with genes knocked out, increased susceptibility to disease, hormones for extra growth and the ability to express proteins in their milk.NEWS,weblink The mouse that shook the world, Connor, Steve, vanc, 2 November 2007, The Independent,

Medicine

Genetic engineering has many applications to medicine that include the manufacturing of drugs, creation of model animals that mimic human conditions and gene therapy. One of the earliest uses of genetic engineering was to mass-produce human insulin in bacteria. This application has now been applied to, human growth hormones, follicle stimulating hormones (for treating infertility), human albumin, monoclonal antibodies, antihemophilic factors, vaccines and many other drugs.BOOK, {{google books, y, gR8cWf2-UY4C, |title=The hope, hype & reality of genetic engineering: remarkable stories from agriculture, industry, medicine, and the environment|last=Avise|first=John C.| name-list-format = vanc |publisher=Oxford University Press US|year=2004|isbn=978-0-19-516950-8|page=22}}JOURNAL, 10 December 2012, Engineering algae to make complex anti-cancer 'designer' drug,weblink PhysOrg, 15 April 2013, Mouse hybridomas, cells fused together to create monoclonal antibodies, have been adapted through genetic engineering to create human monoclonal antibodies.JOURNAL, Roque AC, Lowe CR, Taipa MA, Antibodies and genetically engineered related molecules: production and purification, Biotechnology Progress, 20, 3, 639–54, 2004, 15176864, 10.1021/bp030070k, In 2017, genetic engineering of chimeric antigen receptors on a patient's own T-cells was approved by the U.S. FDA as a treatment for the cancer acute lymphoblastic leukemia. Genetically engineered viruses are being developed that can still confer immunity, but lack the infectious sequences.JOURNAL, Rodriguez LL, Grubman MJ, Foot and mouth disease virus vaccines, Vaccine, 27 Suppl 4, D90-4, November 2009, 19837296, 10.1016/j.vaccine.2009.08.039, Genetic engineering is also used to create animal models of human diseases. Genetically modified mice are the most common genetically engineered animal model.WEB,weblink Background: Cloned and Genetically Modified Animals, 14 April 2005, Center for Genetics and Society, They have been used to study and model cancer (the oncomouse), obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, aging and Parkinson disease.WEB,weblink Knockout Mice, 2009, Nation Human Genome Research Institute, Potential cures can be tested against these mouse models. Also genetically modified pigs have been bred with the aim of increasing the success of pig to human organ transplantation.NEWS,weblink GM pigs best bet for organ transplant, 21 September 2003, Medical News Today, Gene therapy is the genetic engineering of humans, generally by replacing defective genes with effective ones. Clinical research using somatic gene therapy has been conducted with several diseases, including X-linked SCID,JOURNAL, Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M, 20 years of gene therapy for SCID, Nature Immunology, 11, 6, 457–60, June 2010, 20485269, 10.1038/ni0610-457, chronic lymphocytic leukemia (CLL),JOURNAL, 10.1038/news.2011.472, Cell therapy fights leukaemia, 2011, Ledford, Heidi, vanc, Nature, JOURNAL, Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M, 6, CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia, Science Translational Medicine, 5, 177, 177ra38, March 2013, 23515080, 3742551, 10.1126/scitranslmed.3005930, and Parkinson's disease.JOURNAL, LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS, Tatter SB, Schwalb JM, Poston KL, Henderson JM, Kurlan RM, Richard IH, Van Meter L, Sapan CV, During MJ, Kaplitt MG, Feigin A, 6, AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial, The Lancet. Neurology, 10, 4, 309–19, April 2011, 21419704, 10.1016/S1474-4422(11)70039-4, In 2012, Alipogene tiparvovec became the first gene therapy treatment to be approved for clinical use.Gallagher, James. (2 November 2012) BBC News – Gene therapy: Glybera approved by European Commission. Bbc.co.uk. Retrieved on 15 December 2012.WEB, Richards, Sabrina, vanc, Gene Therapy Arrives in Europe,weblink The Scientist, 16 November 2012, In 2015 a virus was used to insert a healthy gene into the skin cells of a boy suffering from a rare skin disease, epidermolysis bullosa, in order to grow, and then graft healthy skin onto 80 percent of the boy's body which was affected by the illness.NEWS,weblink Genetically Altered Skin Saves A Boy Dying Of A Rare Disease, NPR.org, 2017-11-15, en, Germline gene therapy would result in any change being inheritable, which has raised concerns within the scientific community.WEB,weblink 1990 The Declaration of Inuyama, 5 August 2001, bot: unknown,weblink" title="web.archive.org/web/20010805085535weblink">weblink 5 August 2001, dmy, Smith KR, Chan S, Harris J. Human germline genetic modification: scientific and bioethical perspectives. Arch Med Res. 2012 Oct;43(7):491-513. {{doi|10.1016/j.arcmed.2012.09.003}}. {{PMID|23072719}} In 2015, CRISPR was used to edit the DNA of non-viable human embryos,NEWS, Kolata, Gina, vanc, Chinese Scientists Edit Genes of Human Embryos, Raising Concerns,weblink 23 April 2015, The New York Times, 24 April 2015, JOURNAL, Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J, CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes, Protein & Cell, 6, 5, 363–372, May 2015, 25894090, 4417674, 10.1007/s13238-015-0153-5, leading scientists of major world academies to call for a moratorium on inheritable human genome edits.NEWS, Wade, Nicholas, vanc, Nicholas Wade, Scientists Place Moratorium on Edits to Human Genome That Could Be Inherited,weblink 3 December 2015, The New York Times, 3 December 2015, There are also concerns that the technology could be used not just for treatment, but for enhancement, modification or alteration of a human beings' appearance, adaptability, intelligence, character or behavior.WEB, The Ethics of Gene Therapy, Emilie R., Bergeson, vanc, 1997,weblink The distinction between cure and enhancement can also be difficult to establish.WEB, Kathi E., Hanna, vanc,weblink National Human Genome Research Institute, Genetic Enhancement, In November 2018, He Jiankui announced that he had edited the genomes of two human embryos, to attempt to disable the CCR5 gene, which codes for a receptor that HIV uses to enter cells. He said that twin girls, Lulu and Nana, had been born a few weeks earlier. He said that the girls still carried functional copies of CCR5 along with disabled CCR5 (mosaicism) and were still vulnerable to HIV. The work was widely condemned as unethical, dangerous, and premature.NEWS, Begley, Sharon, vanc, Amid uproar, Chinese scientist defends creating gene-edited babies – STAT,weblink STAT, 28 November 2018, Researchers are altering the genome of pigs to induce the growth of human organs to be used in transplants. Scientists are creating "gene drives", changing the genomes of mosquitoes to make them immune to malaria, and then looking to spread the genetically altered mosquitoes throughout the mosquito population in the hopes of eliminating the disease.NEWS,weblink Open Season Is Seen in Gene Editing of Animals, Harmon, Amy, vanc, 2015-11-26, The New York Times, 2017-09-27, en-US, 0362-4331,

Research

File:PCWmice1.jpg|thumb|Knockout mice ]]File:Expression of Human Wild-Type and P239S Mutant Palladin.png|thumb|Human cells in which some proteins are fused with green fluorescent proteingreen fluorescent proteinGenetic engineering is an important tool for natural scientists, with the creation of transgenic organisms one of the most important tools for analysis of gene function.JOURNAL, Praitis V, Maduro MF, Transgenesis in C. elegans, Methods in Cell Biology, 106, 161–85, 2011, 22118277, 10.1016/B978-0-12-544172-8.00006-2, 9780125441728, Genes and other genetic information from a wide range of organisms can be inserted into bacteria for storage and modification, creating genetically modified bacteria in the process. Bacteria are cheap, easy to grow, clonal, multiply quickly, relatively easy to transform and can be stored at -80 Â°C almost indefinitely. Once a gene is isolated it can be stored inside the bacteria providing an unlimited supply for research.WEB,weblink Rediscovering Biology – Online Textbook: Unit 13 Genetically Modified Organisms, www.learner.org, 2017-08-18, Organisms are genetically engineered to discover the functions of certain genes. This could be the effect on the phenotype of the organism, where the gene is expressed or what other genes it interacts with. These experiments generally involve loss of function, gain of function, tracking and expression.
  • Loss of function experiments, such as in a gene knockout experiment, in which an organism is engineered to lack the activity of one or more genes. In a simple knockout a copy of the desired gene has been altered to make it non-functional. Embryonic stem cells incorporate the altered gene, which replaces the already present functional copy. These stem cells are injected into blastocysts, which are implanted into surrogate mothers. This allows the experimenter to analyse the defects caused by this mutation and thereby determine the role of particular genes. It is used especially frequently in developmental biology.JOURNAL, Alberts, Bruce, Johnson, Alexander, Lewis, Julian, Raff, Martin, Roberts, Keith, Walter, Peter, vanc, 2002, Studying Gene Expression and Function,weblink When this is done by creating a library of genes with point mutations at every position in the area of interest, or even every position in the whole gene, this is called "scanning mutagenesis". The simplest method, and the first to be used, is "alanine scanning", where every position in turn is mutated to the unreactive amino acid alanine.BOOK,weblink Protein Engineering and Design, Park, Sheldon J., Cochran, Jennifer R., vanc, 2009-09-25, CRC Press, 978-1-4200-7659-2, en,
  • Gain of function experiments, the logical counterpart of knockouts. These are sometimes performed in conjunction with knockout experiments to more finely establish the function of the desired gene. The process is much the same as that in knockout engineering, except that the construct is designed to increase the function of the gene, usually by providing extra copies of the gene or inducing synthesis of the protein more frequently. Gain of function is used to tell whether or not a protein is sufficient for a function, but does not always mean it's required, especially when dealing with genetic or functional redundancy.
  • Tracking experiments, which seek to gain information about the localisation and interaction of the desired protein. One way to do this is to replace the wild-type gene with a 'fusion' gene, which is a juxtaposition of the wild-type gene with a reporting element such as green fluorescent protein (GFP) that will allow easy visualisation of the products of the genetic modification. While this is a useful technique, the manipulation can destroy the function of the gene, creating secondary effects and possibly calling into question the results of the experiment. More sophisticated techniques are now in development that can track protein products without mitigating their function, such as the addition of small sequences that will serve as binding motifs to monoclonal antibodies.
  • Expression studies aim to discover where and when specific proteins are produced. In these experiments, the DNA sequence before the DNA that codes for a protein, known as a gene's promoter, is reintroduced into an organism with the protein coding region replaced by a reporter gene such as GFP or an enzyme that catalyses the production of a dye. Thus the time and place where a particular protein is produced can be observed. Expression studies can be taken a step further by altering the promoter to find which pieces are crucial for the proper expression of the gene and are actually bound by transcription factor proteins; this process is known as promoter bashing.BOOK,weblink Techniques in Genetic Engineering, Kurnaz, Isil Aksan, vanc, 2015-05-08, CRC Press, 978-1-4822-6090-8,

Industrial

Organisms can have their cells transformed with a gene coding for a useful protein, such as an enzyme, so that they will overexpress the desired protein. Mass quantities of the protein can then be manufactured by growing the transformed organism in bioreactor equipment using industrial fermentation, and then purifying the protein.WEB, Applications of Genetic Engineering, Microbiologyprocedure,weblink 9 July 2010, dead,weblink" title="web.archive.org/web/20110714085807weblink">weblink 14 July 2011, Some genes do not work well in bacteria, so yeast, insect cells or mammalians cells can also be used.WEB, Biotech: What are transgenic organisms?, Easyscience, 2002,weblink 9 July 2010, dead,weblink" title="web.archive.org/web/20100527060202weblink">weblink 27 May 2010, These techniques are used to produce medicines such as insulin, human growth hormone, and vaccines, supplements such as tryptophan, aid in the production of food (chymosin in cheese making) and fuels.MAGAZINE, Making Gasoline from Bacteria: A biotech startup wants to coax fuels from engineered microbes, Neil, Savage, vanc, 1 August 2007,weblink Technology Review, 16 July 2015, Other applications with genetically engineered bacteria could involve making them perform tasks outside their natural cycle, such as making biofuels,WEB, Summers, Rebecca, vanc, 24 April 2013,weblink Bacteria churn out first ever petrol-like biofuel, New Scientist, 27 April 2013, cleaning up oil spills, carbon and other toxic wasteWEB, Applications of Some Genetically Engineered Bacteria,weblink 9 July 2010, dead,weblink" title="web.archive.org/web/20101127053814weblink">weblink 27 November 2010, and detecting arsenic in drinking water.WEB, Sanderson, Katherine, vanc, 24 February 2012,weblink New Portable Kit Detects Arsenic In Wells, Chemical and Engineering News, 23 January 2013, Certain genetically modified microbes can also be used in biomining and bioremediation, due to their ability to extract heavy metals from their environment and incorporate them into compounds that are more easily recoverable.BOOK, Campbell Biology Ninth Edition, Reece, Jane B., Lisa A., Urry, Cain, Michael L., Wasserman, Steven A., Minorsky, Peter V., Jackson, Robert B., vanc, Pearson Benjamin Cummings, 2011, 978-0-321-55823-7, San Francisco, 421,weblink In materials science, a genetically modified virus has been used in a research laboratory as a scaffold for assembling a more environmentally friendly lithium-ion battery.WEB,weblink New virus-built battery could power cars, electronic devices, Web.mit.edu, 2 April 2009, 17 July 2010, WEB,weblink Hidden Ingredient In New, Greener Battery: A Virus, Npr.org, 17 July 2010, Bacteria have also been engineered to function as sensors by expressing a fluorescent protein under certain environmental conditions.WEB, Researchers Synchronize Blinking 'Genetic Clocks' – Genetically Engineered Bacteria That Keep Track of Time, ScienceDaily, 24 January 2010,weblink

Agriculture

File:Bt plants.png|thumb|upright|Bt-toxins present in peanut leaves (bottom image) protect it from extensive damage caused by lesser cornstalk borer (larva]]e (top image).WEB, Suszkiw, Jan, vanc,weblink Tifton, Georgia: A Peanut Pest Showdown, 23 November 2008, Agricultural Research magazine, November 1999, )One of the best-known and controversial applications of genetic engineering is the creation and use of genetically modified crops or genetically modified livestock to produce genetically modified food. Crops have been developed to increase production, increase tolerance to abiotic stresses, alter the composition of the food, or to produce novel products.JOURNAL, Magaña-Gómez JA, de la Barca AM, Risk assessment of genetically modified crops for nutrition and health, Nutrition Reviews, 67, 1, 1–16, January 2009, 19146501, 10.1111/j.1753-4887.2008.00130.x, The first crops to be released commercially on a large scale provided protection from insect pests or tolerance to herbicides. Fungal and virus resistant crops have also been developed or are in development.JOURNAL, 10.3329/ptcb.v16i2.1113, Fungus Resistant Transgenic Plants: Strategies, Progress and Lessons Learnt, 2008, Islam, Aparna, vanc, Plant Tissue Culture and Biotechnology, 16, 2, 117–38, WEB, Disease resistant crops, GMO Compass,weblink dead,weblink" title="web.archive.org/web/20100603215011weblink">weblink 3 June 2010, dmy-all, This makes the insect and weed management of crops easier and can indirectly increase crop yield.JOURNAL, 10.1111/j.1744-7348.2004.tb00376.x, First impact of biotechnology in the EU: Bt maize adoption in Spain, 2004, Demont M, Tollens E, Annals of Applied Biology, 145, 2, 197–207, BOOK, Sustaining Life, 2008, Oxford University Press, Inc, 978-0-19-517509-7, Eric, Chivian, Aaron, Bernstein, vanc, GM crops that directly improve yield by accelerating growth or making the plant more hardy (by improving salt, cold or drought tolerance) are also under development. In 2016 Salmon have been genetically modified with growth hormones to reach normal adult size much faster.NEWS,weblink Genetically Engineered Salmon Approved for Consumption, 19 November 2015, The New York Times, Pollack, Andrew, vanc, 21 April 2016, GMOs have been developed that modify the quality of produce by increasing the nutritional value or providing more industrially useful qualities or quantities.WEB, Genetically Modified Foods: Harmful or Helpful?, 2000, Deborah B., Whitman, vanc,weblink The Amflora potato produces a more industrially useful blend of starches. Soybeans and canola have been genetically modified to produce more healthy oils.Rapeseed (canola) has been genetically engineered to modify its oil content with a gene encoding a "12:0 thioesterase" (TE) enzyme from the California bay plant (Umbellularia californica) to increase medium length fatty acids, see: Geo-pie.cornell.edu {{webarchive|url=https://web.archive.org/web/20090705230132weblink |date=5 July 2009 }}JOURNAL, Bomgardner MM, 2012, Replacing Trans Fat: New crops from Dow Chemical and DuPont target food makers looking for stable, heart-healthy oils,weblink Chemical and Engineering News, 90, 11, 30–32, The first commercialised GM food was a tomato that had delayed ripening, increasing its shelf life.JOURNAL, Kramer, Matthew G., Redenbaugh, Keith, vanc, 1994-01-01, Commercialization of a tomato with an antisense polygalacturonase gene: The FLAVR SAVR™ tomato story, Euphytica, en, 79, 3, 293–97, 10.1007/BF00022530, 0014-2336, Plants and animals have been engineered to produce materials they do not normally make. Pharming uses crops and animals as bioreactors to produce vaccines, drug intermediates, or the drugs themselves; the useful product is purified from the harvest and then used in the standard pharmaceutical production process.JOURNAL, 10.1051/agro:2007050, Pharmaceutical crops in California, benefits and risks. A review, 2008, Marvier, Michelle, vanc, Agronomy for Sustainable Development, 28, 1, 1–9,weblink Cows and goats have been engineered to express drugs and other proteins in their milk, and in 2009 the FDA approved a drug produced in goat milk.WEB,weblink FDA Approves First Human Biologic Produced by GE Animals, US Food and Drug Administration, WEB, GM cow milk 'could provide treatment for blood disease', Paulo, Rebêlo, vanc, 15 July 2004, SciDev,weblink

Other applications

Genetic engineering has potential applications in conservation and natural area management. Gene transfer through viral vectors has been proposed as a means of controlling invasive species as well as vaccinating threatened fauna from disease.JOURNAL, Angulo E, Cooke B, First synthesize new viruses then regulate their release? The case of the wild rabbit, Molecular Ecology, 11, 12, 2703–9, December 2002, 12453252, 10.1046/j.1365-294X.2002.01635.x, 10261/45541, Transgenic trees have been suggested as a way to confer resistance to pathogens in wild populations.JOURNAL, Adams JM, Piovesan G, Strauss S, Brown S, 2 August 2002, The Case for Genetic Engineering of Native and Landscape Trees against Introduced Pests and Diseases, Conservation Biology, 16, 4, 874–79, 10.1046/j.1523-1739.2002.00523.x, With the increasing risks of maladaptation in organisms as a result of climate change and other perturbations, facilitated adaptation through gene tweaking could be one solution to reducing extinction risks.JOURNAL, Thomas MA, Roemer GW, Donlan CJ, Dickson BG, Matocq M, Malaney J, Ecology: Gene tweaking for conservation, Nature, 501, 7468, 485–6, September 2013, 24073449, 10.1038/501485a, Applications of genetic engineering in conservation are thus far mostly theoretical and have yet to be put into practice.Genetic engineering is also being used to create microbial art.WEB, Bio-artists bridge gap between arts, sciences: Use of living organisms is attracting attention and controversy, Jessica M., Pasko, vanc, msnbc,weblink 2007-03-04, Some bacteria have been genetically engineered to create black and white photographs.WEB, Genetically Modified Bacteria Produce Living Photographs, Joab, Jackson, vanc, National Geographic News, 6 December 2005,weblink Novelty items such as lavender-colored carnations,Phys.Org website. 4 April 2005 "Plant gene replacement results in the world's only blue rose". blue roses,JOURNAL, Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y, Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin, Plant & Cell Physiology, 48, 11, 1589–600, November 2007, 17925311, 10.1093/pcp/pcm131, 10.1.1.319.8365, and glowing fishPublished PCT Application WO2000049150 "Chimeric Gene Constructs for Generation of Fluorescent Transgenic Ornamental Fish." National University of Singapore weblinkJOURNAL, Stewart CN, Go with the glow: fluorescent proteins to light transgenic organisms, Trends in Biotechnology, 24, 4, 155–62, April 2006, 16488034, 10.1016/j.tibtech.2006.02.002,weblink have also been produced through genetic engineering.

Regulation

The regulation of genetic engineering concerns the approaches taken by governments to assess and manage the risks associated with the development and release of GMOs. The development of a regulatory framework began in 1975, at Asilomar, California.JOURNAL, Berg P, Baltimore D, Boyer HW, Cohen SN, Davis RW, Hogness DS, Nathans D, Roblin R, Watson JD, Weissman S, Zinder ND, Letter: Potential biohazards of recombinant DNA molecules, Science, 185, 4148, 303, July 1974, 4600381, 388511, 10.1126/science.185.4148.303,weblink 1974Sci...185..303B, The Asilomar meeting recommended a set of voluntary guidelines regarding the use of recombinant technology. As the technology improved the US established a committee at the Office of Science and Technology,JOURNAL, McHughen A, Smyth S, US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars, Plant Biotechnology Journal, 6, 1, 2–12, January 2008, 17956539, 10.1111/j.1467-7652.2007.00300.x, which assigned regulatory approval of GM food to the USDA, FDA and EPA.JOURNAL, U.S. Office of Science and Technology Policy, Coordinated framework for regulation of biotechnology; announcement of policy; notice for public comment, Federal Register, 51, 123, 23302–50, June 1986, 11655807,weblinkweblink" title="web.archive.org/web/20110516173328weblink">weblink dmy-all, dead, 16 May 2011, The Cartagena Protocol on Biosafety, an international treaty that governs the transfer, handling, and use of GMOs,JOURNAL, Redick, T.P., 2007, The Cartagena Protocol on biosafety: Precautionary priority in biotech crop approvals and containment of commodities shipments, 2007, Colorado Journal of International Environmental Law and Policy, 18, 51–116, was adopted on 29 January 2000.WEB,weblink About the Protocol, The Biosafety Clearing-House (BCH), 29 May 2012, One hundred and fifty-seven countries are members of the Protocol and many use it as a reference point for their own regulations.WEB,weblink AgBioForum 13(3): Implications of Import Regulations and Information Requirements under the Cartagena Protocol on Biosafety for GM Commodities in Kenya, 28 October 2010, The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.WEB,weblink Restrictions on Genetically Modified Organisms, 9 June 2015, Library of Congress, 24 February 2016, WEB,weblink FDA and Regulation of GMOs, Bashshur, Ramona, vanc, February 2013, American Bar Association, 24 February 2016, JOURNAL, Sifferlin, Alexandra, vanc, 3 October 2015, Over Half of E.U. Countries Are Opting Out of GMOs,weblink Time, WEB,weblink The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics, Diahanna, Lynch, Vogel, David, vanc, 5 April 2001, Council on Foreign Relations, 24 February 2016, Some countries allow the import of GM food with authorisation, but either do not allow its cultivation (Russia, Norway, Israel) or have provisions for cultivation even though no GM products are yet produced (Japan, South Korea). Most countries that do not allow GMO cultivation do permit research.WEB,weblink Restrictions on Genetically Modified Organisms - Law Library of Congress, 22 January 2017, Some of the most marked differences occurring between the US and Europe. The US policy focuses on the product (not the process), only looks at verifiable scientific risks and uses the concept of substantial equivalence.Emily Marden, Risk and Regulation: U.S. Regulatory Policy on Genetically Modified Food and Agriculture, 44 B.C.L. Rev. 733 (2003)weblink The European Union by contrast has possibly the most stringent GMO regulations in the world. All GMOs, along with irradiated food, are considered "new food" and subject to extensive, case-by-case, science-based food evaluation by the European Food Safety Authority. The criteria for authorisation fall in four broad categories: "safety," "freedom of choice," "labelling," and "traceability."GMO Compass: The European Regulatory System. {{webarchive|url=https://web.archive.org/web/20120814025652weblink |date=14 August 2012 }} Retrieved 28 July 2012. The level of regulation in other countries that cultivate GMOs lie in between Europe and the United States.{| class="wikitable"|+Regulatory agencies by geographical region!Region!Regulators!Notes|USUnited States Department of Agriculture>USDA, Food and Drug Administration and United States Environmental Protection Agency>EPA||Europe|European Food Safety Authority||CanadaHealth Canada and the Canadian Food Inspection AgencyHTTP://WWW.INSPECTION.GC.CA/ENGLISH/SCI/BIOTECH/BIOTECHE.SHTML AUTHOR =GOVERNMENT OF CANADA, CANADIAN FOOD INSPECTION AGENCY DATE=20 MARCH 2015, HTTP://WWW.THECANADIANENCYCLOPEDIA.COM/ARTICLES/GENETICALLY-MODIFIED-FOODS > TITLE=GENETICALLY MODIFIED FOODS LAST=FORSBERG WORK=THE CANADIAN ENCYCLOPEDIA, 4 October 2017, Canada – Agricultural Biotechnology Annual – 2012 GAIN (Global Agricultural Information Network) report CA12029, United States Department of Agriculture, Foreifn Agricultural Service, Retrieved 5 November 2012PANDORA'S PICNIC BASKETFIRST=ALANDATE=14 SEPTEMBER 2000ISBN=978-0-19-850674-4URL=HTTPS://ARCHIVE.ORG/DETAILS/PANDORASPICNICBA00MCHU, |AfricaCommon Market for Eastern and Southern AfricaTransgenic harvest Editorial, Nature 467, pp. 633–34, 7 October 2010, {{doi>10.1038/467633b}}. Retrieved 9 November 2010|Final decision lies with each individual country.|ChinaDATE=5 SEPTEMBER 2003, ||India|ArgentinaURL-STATUS=DEADARCHIVE-DATE=28 SEPTEMBER 2011, dmy-all, |Final decision made by the Secretariat of Agriculture, Livestock, Fishery and Food.|Brazil|National Biosafety Technical Commission (environmental and food safety) and the Council of Ministers (commercial and economical issues)||AustraliaOffice of the Gene Technology Regulator (oversees all GM products), Therapeutic Goods Administration (GM medicines) and Food Standards Australia New Zealand (GM food).Agriculture – Department of Primary Industries {{webarchive>url=https://web.archive.org/web/20110329120907weblink PUBLISHER=OFFICE OF THE GENE TECHNOLOGY REGULATOR, 25 March 2011, |The individual state governments can then assess the impact of release on markets and trade and apply further legislation to control approved genetically modified products.One of the key issues concerning regulators is whether GM products should be labeled. The European Commission says that mandatory labeling and traceability are needed to allow for informed choice, avoid potential false advertisingWEB, The European Parliament and the Council of the European Union, 2003,weblink Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 On Genetically Modified Food And Feed, Official Journal of the European Union, L 268/3 (21), The labeling should include objective information to the effect that a food or feed consists of, contains or is produced from GMOs. Clear labeling, irrespective of the detectability of DNA or protein resulting from the genetic modification in the final product, meets the demands expressed in numerous surveys by a large majority of consumers, facilitates informed choice and precludes potential misleading of consumers as regards methods of manufacture or production., dead,weblink" title="web.archive.org/web/20140120113714weblink">weblink 20 January 2014, dmy-all, and facilitate the withdrawal of products if adverse effects on health or the environment are discovered.WEB, The European Parliament and the Council of the European Union, 2003,weblink Regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labeling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC, Official Journal L 268, 24–28, (3) Traceability requirements for GMOs should facilitate both the withdrawal of products where unforeseen adverse effects on human health, animal health or the environment, including ecosystems, are established, and the targeting of monitoring to examine potential effects on, in particular, the environment. Traceability should also facilitate the implementation of risk management measures in accordance with the precautionary principle. (4) Traceability requirements for food and feed produced from GMOs should be established to facilitate accurate labeling of such products., The American Medical AssociationWEB, American Medical Association, 2012,weblinkweblink" title="web.archive.org/web/20120907023039weblink">weblink 7 September 2012, dead, Report 2 of the Council on Science and Public Health: Labeling of Bioengineered Foods, and the American Association for the Advancement of ScienceAmerican Association for the Advancement of Science (AAAS), Board of Directors (2012). Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods, and associated Press release: Legally Mandating GM Food Labels Could Mislead and Falsely Alarm Consumers say that absent scientific evidence of harm even voluntary labeling is misleading and will falsely alarm consumers. Labeling of GMO products in the marketplace is required in 64 countries.NEWS, Hallenbeck, Terri, vanc,weblink How GMO labeling came to pass in Vermont, Burlington Free Press, 2014-04-27, 2014-05-28, Labeling can be mandatory up to a threshold GM content level (which varies between countries) or voluntary. In Canada and the US labeling of GM food is voluntary,WEB,weblink The Regulation of Genetically Modified Foods, while in Europe all food (including processed food) or feed which contains greater than 0.9% of approved GMOs must be labelled.JOURNAL, Davison, John, vanc, 2010, GM plants: Science, politics and EC regulations, Plant Science, 178, 2, 94–98, 10.1016/j.plantsci.2009.12.005,

Controversy

Critics have objected to the use of genetic engineering on several grounds, including ethical, ecological and economic concerns. Many of these concerns involve GM crops and whether food produced from them is safe and what impact growing them will have on the environment. These controversies have led to litigation, international trade disputes, and protests, and to restrictive regulation of commercial products in some countries.JOURNAL, Sheldon, Ian M., vanc, 2002-03-01, Regulation of biotechnology: will we ever 'freely' trade GMOs?, European Review of Agricultural Economics, 29, 1, 155–76, 10.1093/erae/29.1.155, 0165-1587, 10.1.1.596.7670, Accusations that scientists are "playing God" and other religious issues have been ascribed to the technology from the beginning.JOURNAL, Dabrock P, Playing God? Synthetic biology as a theological and ethical challenge, Systems and Synthetic Biology, 3, 1–4, 47–54, December 2009, 19816799, 2759421, 10.1007/s11693-009-9028-5, Other ethical issues raised include the patenting of life,JOURNAL, Brown C, Patenting life: genetically altered mice an invention, court declares, CMAJ, 163, 7, 867–8, October 2000, 11033718, 80518, the use of intellectual property rights,NEWS,weblink The Patent Landscape of Genetically Modified Organisms, Zhou, Wen, vanc, 2015-08-10, Science in the News, 2017-05-05, the level of labeling on products,WEB,weblink Why The New GMO Food-Labeling Law Is So Controversial, Puckett, Lily, vanc, 2016-04-20, Huffington Post, 2017-05-05, NEWS,weblink GMO food labels are meaningless, Miller, Henry, vanc, 2016-04-12, Los Angeles Times, 2017-05-05, 0458-3035, control of the food supplyNEWS,weblink Who Controls The Food Supply?, Savage, Steven, vanc, Forbes, 2017-05-05, and the objectivity of the regulatory process.BOOK,weblink Science, Risk, and Policy, Knight, Andrew J., vanc, 2016-04-14, Routledge, 978-1-317-28081-1, 156, Although doubts have been raised,NEWS,weblink Doubts About the Promised Bounty of Genetically Modified Crops, Hakim, Danny, vanc, 2016-10-29, The New York Times, 2017-05-05, 0362-4331, economically most studies have found growing GM crops to be beneficial to farmers.JOURNAL, Areal FJ, Riesgo L, Rodríguez-Cerezo E, 2013-02-01, Economic and agronomic impact of commercialized GM crops: a meta-analysis, The Journal of Agricultural Science, 151, 1, 7–33, 10.1017/S0021859612000111, JOURNAL, Finger, Robert, El Benni, Nadja, Kaphengst, Timo, Evans, Clive, Herbert, Sophie, Lehmann, Bernard, Morse, Stephen, Stupak, Nataliya, vanc, 2011-05-10, A Meta Analysis on Farm-Level Costs and Benefits of GM Crops, Sustainability, 3, 5, 743–62, 10.3390/su3050743,weblink JOURNAL, Klümper W, Qaim M, A meta-analysis of the impacts of genetically modified crops, PLOS ONE, 9, 11, e111629, 2014-11-03, 25365303, 4218791, 10.1371/journal.pone.0111629, 2014PLoSO...9k1629K, Gene flow between GM crops and compatible plants, along with increased use of selective herbicides, can increase the risk of "superweeds" developing.JOURNAL, Qiu, Jane, vanc, Genetically modified crops pass benefits to weeds,weblink Nature, 10.1038/nature.2013.13517, 2013, Other environmental concerns involve potential impacts on non-target organisms, including soil microbes,WEB,weblink GMOs and the environment, www.fao.org, 2017-05-07, and an increase in secondary and resistant insect pests.JOURNAL, Dively GP, Venugopal PD, Finkenbinder C, Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn, PLOS ONE, 11, 12, e0169115, 2016-12-30, 28036388, 5201267, 10.1371/journal.pone.0169115, 2016PLoSO..1169115D, JOURNAL, Qiu, Jane, 2010-05-13, GM crop use makes minor pests major problem, Nature News, 10.1038/news.2010.242, 10.1.1.464.7885, Many of the environmental impacts regarding GM crops may take many years to be understood and are also evident in conventional agriculture practices.JOURNAL, Gilbert N, Case studies: A hard look at GM crops, Nature, 497, 7447, 24–6, May 2013, 23636378, 10.1038/497024a, 2013Natur.497...24G, With the commercialisation of genetically modified fish there are concerns over what the environmental consequences will be if they escape.WEB,weblink Are GMO Fish Safe for the Environment? {{!, Accumulating Glitches {{!}} Learn Science at Scitable|website=www.nature.com|access-date=2017-05-07}}There are three main concerns over the safety of genetically modified food: whether they may provoke an allergic reaction; whether the genes could transfer from the food into human cells; and whether the genes not approved for human consumption could outcross to other crops.WEB,weblink Q&A: genetically modified food, World Health Organization, 2017-05-07, There is a scientific consensusJOURNAL, Nicolia A, Manzo A, Veronesi F, Rosellini D, An overview of the last 10 years of genetically engineered crop safety research, Critical Reviews in Biotechnology, 34, 1, 77–88, March 2014, 24041244, 10.3109/07388551.2013.823595, We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops. The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns., WEB,weblink State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops, Food and Agriculture Organization of the United Nations, Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate. These conclusions represent the consensus of the scientific evidence surveyed by the ICSU (2003) and they are consistent with the views of the World Health Organization (WHO, 2002). These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants – mainly maize, soybean and oilseed rape – without any observed adverse effects (ICSU)., 8 February 2016, JOURNAL, Ronald P, Plant genetics, sustainable agriculture and global food security, Genetics, 188, 1, 11–20, May 2011, 21546547, 3120150, 10.1534/genetics.111.128553, "There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat. After 14 years of cultivation and a cumulative total of 2 billion acres planted, no adverse health or environmental effects have resulted from commercialization of genetically engineered crops (Board on Agriculture and Natural Resources, Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, National Research Council and Division on Earth and Life Studies 2002). Both the U.S. National Research Council and the Joint Research Centre (the European Union's scientific and technical research laboratory and an integral part of the European Commission) have concluded that there is a comprehensive body of knowledge that adequately addresses the food safety issue of genetically engineered crops (Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004; European Commission Joint Research Centre 2008). These and other recent reports conclude that the processes of genetic engineering and conventional breeding are no different in terms of unintended consequences to human health and the environment (European Commission Directorate-General for Research and Innovation 2010).", But see also:JOURNAL, Domingo JL, Giné Bordonaba J, A literature review on the safety assessment of genetically modified plants, Environment International, 37, 4, 734–42, May 2011, 21296423, 10.1016/j.envint.2011.01.003, In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies., JOURNAL, Krimsky, Sheldon, vanc, 2015, An Illusory Consensus behind GMO Health Assessment,weblink Science, Technology, & Human Values, 40, 6, 883–914, 10.1177/0162243915598381, I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story., And contrast:JOURNAL, Panchin AY, Tuzhikov AI, Published GMO studies find no evidence of harm when corrected for multiple comparisons, Critical Reviews in Biotechnology, 37, 2, 213–217, March 2017, 26767435, 10.3109/07388551.2015.1130684, Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm. The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality., andJOURNAL, Yang YT, Chen B, Governing GMOs in the USA: science, law and public health, Journal of the Science of Food and Agriculture, 96, 6, 1851–5, April 2016, 26536836, 10.1002/jsfa.7523, "It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA (citing Domingo and Bordonaba, 2011). Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date. Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome.",
that currently available food derived from GM crops poses no greater risk to human health than conventional food,WEB,weblink Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods, 20 October 2012, American Association for the Advancement of Science, "The EU, for example, has invested more than €300 million in research on the biosafety of GMOs. Its recent report states: "The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies." The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.", 8 February 2016, WEB,weblink AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers", Pinholster, Ginger, vanc, 25 October 2012, American Association for the Advancement of Science, 8 February 2016,
BOOK,weblink A decade of EU-funded GMO research (2001–2010), 2010, Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Commission, European Union., 10.2777/97784, 978-92-79-16344-9, 8 February 2016, WEB,weblink AMA Report on Genetically Modified Crops and Foods (online summary), January 2001, American Medical Association, "A report issued by the scientific council of the American Medical Association (AMA) says that no long-term health effects have been detected from the use of transgenic crops and genetically modified foods, and that these foods are substantially equivalent to their conventional counterparts. (from online summary prepared by International Service for the Acquisition of Agri-biotech Applications, ISAAA)" "Crops and foods produced using recombinant DNA techniques have been available for fewer than 10 years and no long-term effects have been detected to date. These foods are substantially equivalent to their conventional counterparts. (from original report by American Medical Association, AMA: weblink)", 19 March 2016, WEB,weblink Report 2 of the Council on Science and Public Health (A-12): Labeling of Bioengineered Foods, 2012, American Medical Association, Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature., 19 March 2016, bot: unknown,weblink" title="web.archive.org/web/20120907023039weblink">weblink 7 September 2012, dmy, WEB,weblink Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion, 9 June 2015, Library of Congress, "Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products. These include the National Research Council, the American Association for the Advancement of Science, and the American Medical Association. Groups in the US opposed to GMOs include some environmental organizations, organic farming organizations, and consumer organizations. A substantial number of legal academics have criticized the US's approach to regulating GMOs.", 8 February 2016, BOOK,weblink Genetically Engineered Crops: Experiences and Prospects, 2016, The National Academies of Sciences, Engineering, and Medicine (US), 149, "Overall finding on purported adverse effects on human health of foods derived from GE crops: On the basis of detailed examination of comparisons of currently commercialized GE with non-GE foods in compositional analysis, acute and chronic animal toxicity tests, long-term data on health of livestock fed GE foods, and human epidemiological data, the committee found no differences that implicate a higher risk to human health from GE foods than from their non-GE counterparts.", 19 May 2016, 10.17226/23395, 28230933, 978-0-309-43738-7, National Academies Of Sciences, Engineering, Division on Earth Life Studies, Board on Agriculture Natural Resources, Committee on Genetically Engineered Crops: Past Experience Future Prospects, but that each GM food needs to be tested on a case-by-case basis before introduction.WEB,weblink Frequently asked questions on genetically modified foods, World Health Organization, Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods. GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods., 8 February 2016, JOURNAL, Haslberger AG, Codex guidelines for GM foods include the analysis of unintended effects, Nature Biotechnology, 21, 7, 739–41, July 2003, 12833088, 10.1038/nbt0703-739, These principles dictate a case-by-case premarket assessment that includes an evaluation of both direct and unintended effects., Some medical organizations, including the British Medical Association, advocate further caution based upon the precautionary principle:WEB,weblink Genetically modified foods and health: a second interim statement, March 2004, British Medical Association, In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available. When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis. Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects. The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit., 21 March 2016, Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe.WEB, Cary, Funk, Rainie, Lee, vanc,weblink Public and Scientists' Views on Science and Society, 29 January 2015, Pew Research Center, The largest differences between the public and the AAAS scientists are found in beliefs about the safety of eating genetically modified (GM) foods. Nearly nine-in-ten (88%) scientists say it is generally safe to eat GM foods compared with 37% of the general public, a difference of 51 percentage points., 24 February 2016, JOURNAL, Marris C, Public views on GMOs: deconstructing the myths. Stakeholders in the GMO debate often describe public opinion as irrational. But do they really understand the public?, EMBO Reports, 2, 7, 545–8, July 2001, 11463731, 1083956, 10.1093/embo-reports/kve142, WEB,weblink Public Perceptions of Agricultural Biotechnologies in Europe, December 2001, Commission of European Communities, Final Report of the PABE research project, 24 February 2016, JOURNAL, Scott SE, Inbar Y, Rozin P, Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States, Perspectives on Psychological Science, 11, 3, 315–24, May 2016, 27217243, 10.1177/1745691615621275,

In popular culture

Genetic engineering features in many science fiction stories.WEB, Genetic Engineering,weblink The Encyclopedia of Science Fiction, 19 July 2018, 15 May 2017,weblink 26 August 2018, live, Frank Herbert's novel The White Plague described the deliberate use of genetic engineering to create a pathogen which specifically killed women. Another of Herbert's creations, the Dune series of novels, uses genetic engineering to create the powerful but despised Tleilaxu.WEB,weblink The Science of Sci-Fi: How Science Fiction Predicted the Future of Genetics, Koboldt, Daniel, vanc, 29 August 2017, Outer Places,weblink 19 July 2018, live, 19 July 2018, Films such as The Island and Blade Runner bring the engineered creature to confront the person who created it or the being it was cloned from. Few films have informed audiences about genetic engineering, with the exception of the 1978 The Boys from Brazil and the 1993 Jurassic Park, both of which made use of a lesson, a demonstration, and a clip of scientific film.JOURNAL, Moraga, Roger, vanc, November 2009, Modern Genetics in the World of Fiction,weblink live, Clarkesworld Magazine, 38,weblink" title="web.archive.org/web/20180719114128weblink">weblink 19 July 2018, WEB, Clark, Michael, vanc, Genetic themes in fiction films: Genetics meets Hollywood,weblink The Wellcome Trust, 19 July 2018, dead,weblink" title="web.archive.org/web/20120518055848weblink">weblink 18 May 2012, Genetic engineering methods are weakly represented in film; Michael Clark, writing for The Wellcome Trust, calls the portrayal of genetic engineering and biotechnology "seriously distorted" in films such as The 6th Day. In Clark's view, the biotechnology is typically "given fantastic but visually arresting forms" while the science is either relegated to the background or fictionalised to suit a young audience.

See also

References

{{Reflist}}

Further reading

  • BOOK, British Medical Association, British Medical Association, The Impact of Genetic Modification on Agriculture, Food and Health, BMJ Books, 1999, 0-7279-1431-6,
  • BOOK, Donnellan, Craig, Genetic Modification (Issues), Independence Educational Publishers, 2004, 1-86168-288-3,
  • BOOK, Sally, Morgan, vanc, Superfoods: Genetic Modification of Foods, {{google books, y, 48QpTA2P6O0C, |date=1 January 2009|publisher=Heinemann Library|isbn=978-1-4329-2455-3}}
  • BOOK, Smiley, Sophie, Genetic Modification: Study Guide (Exploring the Issues), Independence Educational Publishers, 2005, 1-86168-307-3,
  • BOOK, Watson, James D., James D. Watson, vanc, Recombinant DNA: Genes and Genomes: A Short Course, W.H. Freeman, San Francisco, 2007, 978-0-7167-2866-5,
  • JOURNAL, Weaver, Sean, Morris, Michael, vanc, An Annotated Bibliography of Scientific Publications on the Risks Associated with Genetic Modification, Victoria University, Wellington, NZ, 2003,weblink
  • BOOK, Zaid A, Hughes HG, Porceddu E, Nicholas F, Glossary of Biotechnology for Food and Agriculture – A Revised and Augmented Edition of the Glossary of Biotechnology and Genetic Engineering,weblink 2001, FAO, Rome, Italy, 92-5-104683-2,

External links

{hide}Library resources box
|onlinebooks=no
|by=no
|lcheading=Genetic engineering{edih}
{{Commons category}} {{Genetics}}{{Biotechnology}}{{Emerging technologies}}{{Authority control}}

- content above as imported from Wikipedia
- "genetic engineering" does not exist on GetWiki (yet)
- time: 7:54pm EDT - Thu, Sep 19 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
CONNECT