SUPPORT THE WORK

GetWiki

List of regular polytopes#Hyperbolic tilings

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
List of regular polytopes#Hyperbolic tilings
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{Short description|None}}{{use dmy dates|cs1-dates=ly|date=December 2020}}{| class="wikitable floatright"|+ Example regular polytopes!colspan=2|Regular (2D) polygons!Convex!Star
align=center
150px){5}150px){5/2}
!colspan=2|Regular (3D) polyhedra
!Convex!Star
align=center
150px){5,3}150px){5/2,5}
! colspan="2" |Regular 4D polytopes
!Convex!Star
150px){5,3,3}150px){5/2,5,3}
!colspan=2|Regular 2D tessellations
!Euclidean!Hyperbolic
align=center
150px){4,4}150px){5,4}
!colspan=2|Regular 3D tessellations
!Euclidean!Hyperbolic
align=center
150px){4,3,4}150px){5,3,4}
This article lists the regular polytopes in Euclidean, spherical and hyperbolic spaces.

Overview

This table shows a summary of regular polytope counts by rank.{| class="wikitable"!rowspan=3|Rank!rowspan=2 colspan=3|Finite!rowspan=2 colspan=2|Euclidean!colspan=3|Hyperbolic!rowspan=3|Abstract!colspan=2|Compact!Paracompact
!Convex!Star!Skew{{efn|name=full rank|Only counting polytopes of full rank. There are more regular polytopes of each rank > 1 in higher dimensions.}}{{citation|last=McMullen|first=Peter|year=2004|title=Regular polytopes of full rank|journal=Discrete & Computational Geometry|volume=32 |pages=1–35 |doi=10.1007/s00454-004-0848-5 |s2cid=46707382 |url=https://link.springer.com/article/10.1007/s00454-004-0848-5}}!Convex!Skew{{efn|name=full rank}}!Convex!Star!Convex
align=center!1
1style="color:#999999; font-size:80%"none>nonestyle="color:#999999; font-size:80%"none>nonestyle="color:#999999; font-size:80%"none>nonestyle="color:#999999; font-size:80%"none>|1
align=center!2
inftyinftystyle="color:#999999; font-size:80%"none>none1style="color:#999999; font-size:80%"none>noneinfty
align=center!3
54933inftyinftyinftyinfty
align=center!4
61018174style="color:#999999; font-size:80%"none>|infty
align=center!5
3style="color:#999999; font-size:80%"none>|infty
align=center!6
3style="color:#999999; font-size:80%"none>nonestyle="color:#999999; font-size:80%"none>|infty
align=center!7+
3style="color:#999999; font-size:80%"none>nonestyle="color:#999999; font-size:80%"none>noneinfty
{{notelist}}There are no Euclidean regular star tessellations in any number of dimensions.">

1-polytopes{| classwikitable alignright width330 valign=top
frameless|upright)Coxeter diagram represent mirror "planes" as nodes, and puts a ring around a node if a point is not on the plane. A dion { }, {{CDD>node_1}}, is a point {{mvarp'}}, and the line segment between them.
There is only one polytope of rank 1 (1-polytope), the closed line segment bounded by its two endpoints. Every realization of this 1-polytope is regular. It has the Schläfli symbol { },{{sfnp|Coxeter|1973|p=129}}{{sfnp|McMullen|Schulte|2002|p=30}} or a Coxeter diagram with a single ringed node, {{CDD|node_1}}. Norman Johnson calls it a dionBOOK, Norman Johnson (mathematician), N.W., Johnson, Geometries and Transformations, 2018, 978-1-107-10340-5, Chapter 11: Finite symmetry groups, Cambridge University Press, 11.1 Polytopes and Honeycombs, p. 224, and gives it the Schläfli symbol { }.Although trivial as a polytope, it appears as the edges of polygons and other higher dimensional polytopes.{{sfnp|Coxeter|1973|p=120}} It is used in the definition of uniform prisms like Schläfli symbol { }×{p}, or Coxeter diagram {{CDD|node_1|2|node_1|p|node}} as a Cartesian product of a line segment and a regular polygon.{{sfnp|Coxeter|1973|p=124}}

2-polytopes (polygons)

The polytopes of rank 2 (2-polytopes) are called polygons. Regular polygons are equilateral and cyclic. A {{mvar|p}}-gonal regular polygon is represented by Schläfli symbol {p}.Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular. They use the same vertices as the convex forms, but connect in an alternate connectivity which passes around the circle more than once to be completed.

Convex

The Schläfli symbol {p} represents a regular {{mvar|p}}-gon.{| class="wikitable" style="text-align:center; border:0;" bgcolor="#e0e0e0" valign="top"!Name!Triangle(2-simplex)!Square(2-orthoplex)(2-cube)!Pentagon(2-pentagonalpolytope)!Hexagon!Heptagon!Octagon
bgcolor="#ffd0d0"!Schläfli|{3}|{4}|{5}|{6}|{7}|{8}
!Symmetry
|D8, [8]
!Coxeter
node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}
!Image
Image:Regular triangle.svg>60pxImage:Regular quadrilateral.svg>60pxImage:Regular pentagon.svg>60pxImage:Regular hexagon.svg>60pxImage:Regular heptagon.svg>60pxImage:Regular octagon.svg>60px
!Name!Nonagon(Enneagon)!Decagon!Hendecagon!Dodecagon!Tridecagon!Tetradecagon
bgcolor="#ffd0d0"!Schläfli|{9}|{10}|{11}|{12}|{13}|{14}
!Symmetry
|D14, [14]
!Dynkin
node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}
!Image
Image:Regular nonagon.svg>60pxImage:Regular decagon.svg>60pxImage:Regular hendecagon.svg>60pxImage:Regular dodecagon.svg>60pxImage:Regular tridecagon.svg>60pxImage:Regular tetradecagon.svg>60px
!Name!Pentadecagon!Hexadecagon!Heptadecagon!Octadecagon!Enneadecagon!Icosagon! ...p-gon
bgcolor="#ffd0d0"!Schläfli|{15}|{16}|{17}|{18}|{19}|{20}|{p}
!Symmetry
|Dp, [p]
!Dynkin
node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}
!Image
Image:Regular pentadecagon.svg>60pxImage:Regular hexadecagon.svg>60pxImage:Regular heptadecagon.svg>60pxImage:Regular octadecagon.svg>60pxImage:Regular enneadecagon.svg>60pxImage:Regular icosagon.svg>60pxImage:Disk 1.svg>60px

Spherical

The regular digon {2} can be considered to be a degenerate regular polygon. It can be realized non-degenerately in some non-Euclidean spaces, such as on the surface of a sphere or torus. For example, digon can be realised non-degenerately as a spherical lune. A monogon {1} could also be realised on the sphere as a single point with a great circle through it.Coxeter, Regular Complex Polytopes, p. 9 However, a monogon is not a valid abstract polytope because its single edge is incident to only one vertex rather than two.{| class="wikitable" style="text-align:center;" bgcolor="#e0e0e0" valign="top"!Name|Monogon|Digon
bgcolor="#eeeedd"!Schläfli symbol|{1}|{2}
!Symmetry|D1, [ ]|D2, [2]
!Coxeter diagram
node}} or {{CDD2x|node}}node_1node}}
!Image
60px)Image:Digon.svg>60px

Stars

There exist infinitely many regular star polytopes in two dimensions, whose Schläfli symbols consist of rational numbers {{math|{{mset|n/m}}}}. They are called star polygons and share the same vertex arrangements of the convex regular polygons.In general, for any natural number {{mvar|n}}, there are regular {{mvar|n}}-pointed stars with Schläfli symbols {{math|{{mset|n/m}}}} for all {{mvar|m}} such that {{math|m < n/2}} (strictly speaking {{math|{{mset|n/m}} {{=}} {{mset|n/(n − m)}}}}) and {{mvar|m}} and {{mvar|n}} are coprime (as such, all stellations of a polygon with a prime number of sides will be regular stars). Symbols where {{mvar|m}} and {{mvar|n}} are not coprime may be used to represent compound polygons.{| class="wikitable" style="text-align:center;" bgcolor="#e0e0e0"!Name|Pentagram
Heptagrams|Octagram EnneagramsDecagram (geometry)>Decagramstar polygon>n-grams
bgcolor="#ffd0d0"!Schläfli|{5/2}|{7/2}|{7/3}|{8/3}|{9/2}|{9/4}|{10/3}|{p/q}
!Symmetry
D7, [7]D8, [8]colspan=2|Dp, [p]
!Coxeter
node_1ratnode}}node_1ratnode}}node_1ratnode}}node_1ratnode}}node_1ratnode}}node_1ratnode}}node_1ratnode}}node_1ratnode}}
!Image
75px)75px)75px)75px)75px)75px)75px)| 
{| class=wikitable|+ Regular star polygons up to 20 sides align=center
60px){11/2}60px){11/3}60px){11/4}60px){11/5}60px){12/5}60px){13/2}60px){13/3}60px){13/4}60px){13/5}60px){13/6}
align=center
60px){14/3}60px){14/5}60px){15/2}60px){15/4}60px){15/7}60px){16/3}60px){16/5}60px){16/7}
align=center
60px){17/2}60px){17/3}60px){17/4}60px){17/5}60px){17/6}60px){17/7}60px){17/8}60px){18/5}60px){18/7}
align=center
60px){19/2}60px){19/3}60px){19/4}60px){19/5}60px){19/6}60px){19/7}60px){19/8}60px){19/9}60px){20/3}60px){20/7}60px){20/9}
Star polygons that can only exist as spherical tilings, similarly to the monogon and digon, may exist (for example: {3/2}, {5/3}, {5/4}, {7/4}, {9/5}), however these do not appear to have been studied in detail.There also exist failed star polygons, such as the piangle, which do not cover the surface of a circle finitely many times.WEB,weblink Between a square rock and a hard pentagon: Fractional polygons, Duncan, Hugh, 28 September 2017, chalkdust,

Skew polygons

In addition to the planar regular polygons there are infinitely many regular skew polygons. Skew polygons can be created via the blending operation.The blend of two polygons {{mvar|P}} and {{mvar|Q}}, written {{math|P#Q}}, can be constructed as follows:
  1. take the cartesian product of their vertices {{math|V{{Sub|P}} × V{{sub|Q}}}}.
  2. add edges {{math|(p{{sub|0}} × q{{sub|0}}, p{{sub|1}} × q{{sub|1}})}} where {{math|(p{{sub|0}}, p{{sub|1}})}} is an edge of {{mvar|P}} and {{math|(q{{sub|0}}, q{{sub|1}})}} is an edge of {{mvar|Q}}.
  3. select an arbitrary connected component of the result.
Alternatively, the blend is the polygon {{math|{{angbr|ρ{{sub|0}}σ{{sub|0}}, ρ{{sub|1}}σ{{sub|1}}}}}} where {{mvar|ρ}} and {{mvar|σ}} are the generating mirrors of {{mvar|P}} and {{mvar|Q}} placed in orthogonal subspaces.{{sfn|McMullen|Schulte|2002}}The blending operation is commutative, associative and idempotent.Every regular skew polygon can be expressed as the blend of a unique{{efn|up to identity and idempotency}} set of planar polygons.{{sfn|McMullen|Schulte|2002}} If {{mvar|P}} and {{mvar|Q}} share no factors then {{math|Dim(P#Q) {{=}} Dim(P) + Dim(Q)}}.

In 3 space

The regular finite polygons in 3 dimensions are exactly the blends of the planar polygons (dimension 2) with the digon (dimension 1). They have vertices corresponding to a prism ({{math|{{mset|n/m}}#{{(}}{{)}}}} where {{mvar|n}} is odd) or an antiprism ({{math|{{mset|n/m}}#{{(}}{{)}}}} where {{mvar|n}} is even). All polygons in 3 space have an even number of vertices and edges.Several of these appear as the Petrie polygons of regular polyhedra.

In 4 space

The regular finite polygons in 4 dimensions are exactly the polygons formed as a blend of two distinct planar polygons. They have vertices lying on a Clifford torus and related by a Clifford displacement. Unlike 3-dimensional polygons, skew polygons on double rotations can include an odd-number of sides.

3-polytopes (polyhedra)

Polytopes of rank 3 are called polyhedra:A regular polyhedron with Schläfli symbol {{math|{{mset|p, q}}}}, Coxeter diagrams {{CDD|node_1|p|node|q|node}}, has a regular face type {{math|{{mset|p}}}}, and regular vertex figure {{math|{{mset|1}}}}.A vertex figure (of a polyhedron) is a polygon, seen by connecting those vertices which are one edge away from a given vertex. For regular polyhedra, this vertex figure is always a regular (and planar) polygon.Existence of a regular polyhedron {{math|{{mset|p, q}}}} is constrained by an inequality, related to the vertex figure's angle defect:begin{align}& frac{1}{p} + frac{1}{q} > frac{1}{2} : text{Polyhedron (existing in Euclidean 3-space)} [6pt]& frac{1}{p} + frac{1}{q} = frac{1}{2} : text{Euclidean plane tiling} [6pt]& frac{1}{p} + frac{1}{q} < frac{1}{2} : text{Hyperbolic plane tiling}end{align}By enumerating the permutations, we find five convex forms, four star forms and three plane tilings, all with polygons {{math|{{mset|p}}}} and {{math|{{mset|q}}}} limited to: {3}, {4}, {5}, {5/2}, and {6}.Beyond Euclidean space, there is an infinite set of regular hyperbolic tilings.

Convex

The five convex regular polyhedra are called the Platonic solids. The vertex figure is given with each vertex count. All these polyhedra have an Euler characteristic (χ) of 2.{| class="wikitable" style="text-align:center;"!Name!Schläfli{{math|{{mset|p, q}}}}!Coxeter{{CDD|node_1|p|node|q|node}}!Image(solid)!Image(sphere)!Faces{{math|{{mset|p}}}}!Edges!Vertices{{math|{{mset|q}}}}!Symmetry!Dual
bgcolor="#e0e0e0"
Tetrahedron(Simplex>3-simplex)|{3,3}node_1nodenode}}76px)76px)|4{3}|6|4{3}|Td[3,3](*332)|(self)
bgcolor="#ffe0e0"
Cube (hypercube>3-cube)|{4,3}node_1nodenode}}76px)76px)|6{4}|12|8{3}|Oh[4,3](*432)|Octahedron
bgcolor="#e0e0ff"
Octahedron(Cross-polytope>3-orthoplex)|{3,4}node_1nodenode}}76px)76px)|8{3}|12|6{4}|Oh[4,3](*432)|Cube
bgcolor="#ffe0e0"|Dodecahedron|{5,3}
node_1nodenode}}76px)76px)|12{5}|30|20{3}|Ih[5,3](*532)|Icosahedron
bgcolor="#e0e0ff"|Icosahedron|{3,5}
node_1nodenode}}76px)76px)|20{3}|30|12{5}|Ih[5,3](*532)|Dodecahedron

Spherical

In spherical geometry, regular spherical polyhedra (tilings of the sphere) exist that would otherwise be degenerate as polytopes. These are the hosohedra {2,n} and their dual dihedra {n,2}. Coxeter calls these cases "improper" tessellations.{{sfnp|Coxeter|1973|pp=66-67}}The first few cases (n from 2 to 6) are listed below.{| class="wikitable" style="text-align:center;"|+ Hosohedra valign="top"!Name!Schläfli{2,p}!Coxeterdiagram!Image(sphere)!Faces{2}π/p!Edges!Vertices{p}!Symmetry!Dual
bgcolor="#e0e0e0"|Digonal hosohedron|{2,2}
node_1nodenode}}75px)|2{2}π/2|2|2{2}π/2|D2h[2,2](*222)|Self
bgcolor="#ffe0e0"|Trigonal hosohedron|{2,3}
node_1nodenode}}75px)|3{2}π/3|3|2{3}|D3h[2,3](*322)|Trigonal dihedron
bgcolor="#ffe0e0"|Square hosohedron|{2,4}
node_1nodenode}}75px)|4{2}π/4|4|2{4}|D4h[2,4](*422)|Square dihedron
bgcolor="#ffe0e0"|Pentagonal hosohedron|{2,5}
node_1nodenode}}75px)|5{2}π/5|5|2{5}|D5h[2,5](*522)|Pentagonal dihedron
bgcolor="#ffe0e0"|Hexagonal hosohedron|{2,6}
node_1nodenode}}75px)|6{2}π/6|6|2{6}|D6h[2,6](*622)|Hexagonal dihedron
{| class="wikitable" style="text-align:center;"|+ Dihedra valign="top"!Name!Schläfli{p,2}!Coxeterdiagram!Image(sphere)!Faces{p}!Edges!Vertices{2}!Symmetry!Dual
bgcolor="#e0e0e0"|Digonal dihedron|{2,2}
node_1nodenode}}75px)|2{2}π/2|2|2{2}π/2|D2h[2,2](*222)|Self
bgcolor="#e0e0ff"|Trigonal dihedron|{3,2}
node_1nodenode}}75px)|2{3}|3|3{2}π/3|D3h[3,2](*322)|Trigonal hosohedron
bgcolor="#e0e0ff"|Square dihedron|{4,2}
node_1nodenode}}75px)|2{4}|4|4{2}π/4|D4h[4,2](*422)|Square hosohedron
bgcolor="#e0e0ff"|Pentagonal dihedron|{5,2}
node_1nodenode}}75px)|2{5}|5|5{2}π/5|D5h[5,2](*522)|Pentagonal hosohedron
bgcolor="#e0e0ff"|Hexagonal dihedron|{6,2}
node_1nodenode}}75px)|2{6}|6|6{2}π/6|D6h[6,2](*622)|Hexagonal hosohedron
Star-dihedra and hosohedra {{math|{{mset|p/q, 2}}}} and {{math|{{mset|2, p/q}}}} also exist for any star polygon {{math|{{mset|p/q}}}}.

Stars

The regular star polyhedra are called the Kepler–Poinsot polyhedra and there are four of them, based on the vertex arrangements of the dodecahedron {5,3} and icosahedron {3,5}:As spherical tilings, these star forms overlap the sphere multiple times, called its density, being 3 or 7 for these forms. The tiling images show a single spherical polygon face in yellow.{| class="wikitable"!Name!Image(skeletonic)!Image(solid)!Image(sphere)!Stellationdiagram!Schläfli{{math|{{mset|p, q}}}} andCoxeter!Faces{{math|{{mset|p}}}}!Edges!Vertices{{math|{{mset|q}}}}verf.!χ!Density!Symmetry!Dual
BGCOLOR="#ffe0e0" align=center|Small stellated dodecahedron
Image:Skeleton St12, size m.png>80pxImage:Small stellated dodecahedron (gray with yellow face).svg>80pxImage:Small stellated dodecahedron tiling.png>80px80px)nodenoderatnode_1}}Image:Star polygon 5-2.svg>30pxImage:Regular pentagon.svg>30px|Great dodecahedron
BGCOLOR="#e0e0ff" align=center|Great dodecahedron
Image:Skeleton Gr12, size m.png>80pxImage:Great dodecahedron (gray with yellow face).svg>80pxImage:Great dodecahedron tiling.svg>80px80px)node_1noderatnode}}Image:Regular pentagon.svg>30pxImage:Star polygon 5-2.svg>30px|Small stellated dodecahedron
BGCOLOR="#ffe0e0" align=center|Great stellated dodecahedron
Image:Skeleton GrSt12, size s.png>80pxImage:Great stellated dodecahedron (gray with yellow face).svg>80pxImage:Great stellated dodecahedron tiling.svg>80px80px)nodenoderatnode_1}}Image:Star polygon 5-2.svg>30pxImage:Regular triangle.svg>30px|Great icosahedron
BGCOLOR="#e0e0ff" align=center|Great icosahedron
Image:Skeleton Gr20, size m.png>80pxImage:Great icosahedron (gray with yellow face).svg>80pxImage:Great icosahedron tiling.svg>80px80px)node_1noderatnode}}Image:Regular triangle.svg>30pxImage:Star polygon 5-2.svg>30px|Great stellated dodecahedron
There are infinitely many failed star polyhedra. These are also spherical tilings with star polygons in their Schläfli symbols, but they do not cover a sphere finitely many times. Some examples are {5/2,4}, {5/2,9}, {7/2,3}, {5/2,5/2}, {7/2,7/3}, {4,5/2}, and {3,7/3}.

Skew polyhedra

{{Expand section|reason=This section is 75 years behind on mathematical liturature on this topic. It should include Grünbaumian skews.|date=January 2024}}Regular skew polyhedra are generalizations to the set of regular polyhedron which include the possibility of nonplanar vertex figures.For 4-dimensional skew polyhedra, Coxeter offered a modified Schläfli symbol {l,m|n} for these figures, with {l,m} implying the vertex figure, m l-gons around a vertex, and {{mvar|n}}-gonal holes. Their vertex figures are skew polygons, zig-zagging between two planes.The regular skew polyhedra, represented by {l,m|n}, follow this equation:2 sinleft(frac{pi}{l}right) sinleft(frac{pi}{m}right) = cosleft(frac{pi}{n}right)Four of them can be seen in 4-dimensions as a subset of faces of four regular 4-polytopes, sharing the same vertex arrangement and edge arrangement:{| class=wikitable 100px)100px)100px)100px)!{4, 6 | 3}!{6, 4 | 3}!{4, 8 | 3}!{8, 4 | 3}

4-polytopes

Regular 4-polytopes with Schläfli symbol {p,q,r} have cells of type {p,q}, faces of type {p}, edge figures{r}, and vertex figures {q,r}.
  • A vertex figure (of a 4-polytope) is a polyhedron, seen by the arrangement of neighboring vertices around a given vertex. For regular 4-polytopes, this vertex figure is a regular polyhedron.
  • An edge figure is a polygon, seen by the arrangement of faces around an edge. For regular 4-polytopes, this edge figure will always be a regular polygon.
The existence of a regular 4-polytope {p,q,r} is constrained by the existence of the regular polyhedra {p,q}, {q,r}. A suggested name for 4-polytopes is "polychoron".CONFERENCE, Convex and Abstract Polytopes (May 19–21, 2005) and Polytopes Day in Calgary (May 22, 2005), Abstracts,weblink Each will exist in a space dependent upon this expression:
sin left ( frac{pi}{p} right ) sin left(frac{pi}{r}right) - cosleft(frac{pi}{q}right)
> 0 : Hyperspherical 3-space honeycomb or 4-polytope = 0 : Euclidean 3-space honeycomb < 0 : Hyperbolic 3-space honeycomb
These constraints allow for 21 forms: 6 are convex, 10 are nonconvex, one is a Euclidean 3-space honeycomb, and 4 are hyperbolic honeycombs.The Euler characteristic chi for convex 4-polytopes is zero:chi = V+F-E-C = 0

Convex

The 6 convex regular 4-polytopes are shown in the table below. All these 4-polytopes have an Euler characteristic (χ) of 0.{| class="wikitable"! Name! Schläfli{p,q,r}! Coxeter{{CDD|node|p|node|q|node|r|node}}! Cells {p,q}! Faces {p}! Edges {r}! Vertices {q,r}! Dual {r,q,p} BGCOLOR="#e0e0e0" align=center
5-cell(Simplex>4-simplex)| {3,3,3}node_1nodenodenode}}| 5{3,3}| 10{3}| 10 {3}| 5 {3,3}| (self)
BGCOLOR="#ffe0e0" align=center
8-cell(Hypercube>4-cube)(Tesseract)| {4,3,3}node_1nodenodenode}}| 8 {4,3}| 24 {4}| 32 {3}| 16 {3,3}| 16-cell
BGCOLOR="#e0e0ff" align=center
16-cell(Cross-polytope>4-orthoplex)| {3,3,4}node_1nodenodenode}}| 16 {3,3}| 32 {3}| 24 {4}| 8 {3,4}| Tesseract
BGCOLOR="#e0e0e0" align=center| 24-cell| {3,4,3}
node_1nodenodenode}}| 24 {3,4}| 96 {3}| 96 {3}| 24 {4,3}| (self)
BGCOLOR="#ffe0e0" align=center| 120-cell| {5,3,3}
node_1nodenodenode}}| 120 {5,3}| 720 {5}| 1200 {3}| 600 {3,3}| 600-cell
BGCOLOR="#e0e0ff" align=center| 600-cell| {3,3,5}
node_1nodenodenode}}| 600 {3,3}| 1200 {3}| 720 {5}| 120 {3,5}| 120-cell
{| class="wikitable"! 5-cell || 8-cell || 16-cell || 24-cell || 120-cell || 600-cell
! {3,3,3} || {4,3,3} || {3,3,4} || {3,4,3} || {5,3,3} || {3,3,5}
!colspan=6|Wireframe (Petrie polygon) skew orthographic projections
105px)105px)105px)105px)105px)105px)
!colspan=6|Solid orthographic projections
Image:Tetrahedron.png>105pxtetrahedralenvelope (cell/vertex-centered)Image:Hexahedron.png>105pxcubic envelope(cell-centered)105px)cubic envelope(cell-centered)Image:Ortho solid 24-cell.png>105pxcuboctahedralenvelope(cell-centered)Image:Ortho solid 120-cell.png>105pxtruncated rhombictriacontahedronenvelope(cell-centered)Image:Ortho solid 600-cell.png>105pxPentakisicosidodecahedralenvelope(vertex-centered)
!colspan=6|Wireframe Schlegel diagrams (Perspective projection)
Image:Schlegel wireframe 5-cell.png>105px(cell-centered)Image:Schlegel wireframe 8-cell.png>105px(cell-centered)Image:Schlegel wireframe 16-cell.png>105px(cell-centered)Image:Schlegel wireframe 24-cell.png>105px(cell-centered)Image:Schlegel wireframe 120-cell.png>105px(cell-centered)Image:Schlegel wireframe 600-cell vertex-centered.png>105px(vertex-centered)
!colspan=6|Wireframe stereographic projections (Hyperspherical)
Image:Stereographic polytope 5cell.png>105pxImage:Stereographic polytope 8cell.png>105pxImage:Stereographic polytope 16cell.png>105pxImage:Stereographic polytope 24cell.png>105pxImage:Stereographic polytope 120cell.png>105pxImage:Stereographic polytope 600cell.png>105px

Spherical

Di-4-topes and hoso-4-topes exist as regular tessellations of the 3-sphere.Regular di-4-topes (2 facets) include: {3,3,2}, {3,4,2}, {4,3,2}, {5,3,2}, {3,5,2}, {p,2,2}, and their hoso-4-tope duals (2 vertices): {2,3,3}, {2,4,3}, {2,3,4}, {2,3,5}, {2,5,3}, {2,2,p}. 4-polytopes of the form {2,p,2} are the same as {2,2,p}. There are also the cases {p,2,q} which have dihedral cells and hosohedral vertex figures.{| class="wikitable" style="text-align:center;" width=640|+ Regular hoso-4-topes as 3-sphere honeycombs!Schläfli{2,p,q}!Coxeter{{CDD|node_1|2x|node|p|node|q|node}}!Cells{2,p}π/q!Faces{2}π/p,π/q!Edges!Vertices!Vertex figure{p,q}!Symmetry!Dual
bgcolor="#e0e0e0"|{2,3,3}
node_1nodenodenode}}50px)|6{2}π/3,π/3|4|275px)|[2,3,3]|{3,3,2}
bgcolor="#ffe0e0"|{2,4,3}
node_1nodenodenode}}50px)|12{2}π/4,π/3|8|275px)|[2,4,3]|{3,4,2}
bgcolor="#e0e0ff"|{2,3,4}
node_1nodenodenode}}50px)|12{2}π/3,π/4|6|275px)|[2,4,3]|{4,3,2}
bgcolor="#ffe0e0"|{2,5,3}
node_1nodenodenode}}50px)|30{2}π/5,π/3|20|275px)|[2,5,3]|{3,5,2}
bgcolor="#e0e0ff"|{2,3,5}
node_1nodenodenode}}50px)|30{2}π/3,π/5|12|275px)|[2,5,3]|{5,3,2}

Stars

There are ten regular star 4-polytopes, which are called the Schläfli–Hess 4-polytopes. Their vertices are based on the convex 120-cell {5,3,3} and 600-cell {3,3,5}.Ludwig Schläfli found four of them and skipped the last six because he would not allow forms that failed the Euler characteristic on cells or vertex figures (for zero-hole tori: F+V−E=2). Edmund Hess (1843–1903) completed the full list of ten in his German book Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder (1883)weblink.There are 4 unique edge arrangements and 7 unique face arrangements from these 10 regular star 4-polytopes, shown as orthogonal projections:{| class="wikitable"! Name! Wireframe! Solid! Schläfli{p, q, r}Coxeter! Cells{p, q}! Faces{p}! Edges{r}! Vertices{q, r}!Density! χ!Symmetry group! Dual{r, q,p} align=center BGCOLOR="#e0e0ff"| Icosahedral 120-cell(faceted 600-cell)
Image:Schläfli-Hess polychoron-wireframe-3.png>75pxImage:ortho solid 007-uniform polychoron 35p-t0.png>75pxnode_1nodenoderatnode}}Icosahedron>{3,5}
missing image!
- Icosahedron.png -
25px
Triangle>{3}25pxPentagram>{5/2}25pxGreat dodecahedron>{5,5/2}
missing image!
- Great dodecahedron.png -
25px
| 4| 480| H4[5,3,3]| Small stellated 120-cell
align=center BGCOLOR="#ffe0e0"| Small stellated 120-cell
Image:Schläfli-Hess polychoron-wireframe-2.png>75pxImage:ortho solid 010-uniform polychoron p53-t0.png>75pxnodenodenoderatnode_1}}Small stellated dodecahedron>{5/2,5}
missing image!
- Small stellated dodecahedron.png -
25px
Pentagram>{5/2}25pxTriangle>{3}25pxDodecahedron>{5,3}
missing image!
- Dodecahedron.png -
25px
| 4| −480| H4[5,3,3]| Icosahedral 120-cell
align=center BGCOLOR="#e0ffe0"| Great 120-cell
Image:Schläfli-Hess polychoron-wireframe-3.png>75pxImage:ortho solid 008-uniform polychoron 5p5-t0.png>75pxnode_1noderatnodenode}}Great dodecahedron>{5,5/2}
missing image!
- Great dodecahedron.png -
25px
Pentagon>{5}25pxPentagon>{5}25pxSmall stellated dodecahedron>{5/2,5}
missing image!
- Small stellated dodecahedron.png -
25px
| 6| 0| H4[5,3,3]| Self-dual
align=center BGCOLOR="#e0e0ff"| Grand 120-cell
Image:Schläfli-Hess polychoron-wireframe-3.png>75pxImage:ortho solid 009-uniform polychoron 53p-t0.png>75pxnode_1nodenoderatnode}}Dodecahedron>{5,3}
missing image!
- Dodecahedron.png -
25px
Pentagon>{5}25pxPentagram>{5/2}25pxGreat icosahedron>{3,5/2}
missing image!
- Great icosahedron.png -
25px
| 20| 0| H4[5,3,3]| Great stellated 120-cell
align=center BGCOLOR="#ffe0e0"| Great stellated 120-cell
Image:Schläfli-Hess polychoron-wireframe-4.png>75pxImage:ortho solid 012-uniform polychoron p35-t0.png>75pxnodenodenoderatnode_1}}Great stellated dodecahedron>{5/2,3}
missing image!
- Great stellated dodecahedron.png -
25px
Pentagram>{5/2}25pxPentagon>{5}25pxIcosahedron>{3,5}
missing image!
- Icosahedron.png -
25px
| 20| 0| H4[5,3,3]| Grand 120-cell
align=center BGCOLOR="#e0ffe0"| Grand stellated 120-cell
Image:Schläfli-Hess polychoron-wireframe-4.png>75pxImage:ortho solid 013-uniform polychoron p5p-t0.png>75pxnode_1ratnodenoderatnode}}Small stellated dodecahedron>{5/2,5}
missing image!
- Small stellated dodecahedron.png -
25px
Pentagram>{5/2}25pxPentagram>{5/2}25pxGreat dodecahedron>{5,5/2}
missing image!
- Great dodecahedron.png -
25px
| 66| 0| H4[5,3,3]| Self-dual
align=center BGCOLOR="#e0e0ff"| Great grand 120-cell
Image:Schläfli-Hess polychoron-wireframe-2.png>75pxImage:ortho solid 011-uniform polychoron 53p-t0.png>75pxnode_1noderatnodenode}}Great dodecahedron>{5,5/2}
missing image!
- Great dodecahedron.png -
25px
Pentagon>{5}25pxTriangle>{3}25pxGreat stellated dodecahedron>{5/2,3}
missing image!
- Great stellated dodecahedron.png -
25px
| 76| −480| H4[5,3,3]| Great icosahedral 120-cell
align=center BGCOLOR="#ffe0e0"| Great icosahedral 120-cell(great faceted 600-cell)
Image:Schläfli-Hess polychoron-wireframe-4.png>75pxImage:ortho solid 014-uniform polychoron 3p5-t0.png>75pxnodenoderatnodenode_1}}Great icosahedron>{3,5/2}
missing image!
- Great icosahedron.png -
25px
Triangle>{3}25pxPentagon>{5}25pxSmall stellated dodecahedron>{5/2,5}
missing image!
- Small stellated dodecahedron.png -
25px
| 76| 480| H4[5,3,3]| Great grand 120-cell
align=center BGCOLOR="#e0e0ff"| Grand 600-cell
Image:Schläfli-Hess polychoron-wireframe-4.png>75pxImage:ortho solid 015-uniform polychoron 33p-t0.png>75pxnode_1nodenoderatnode}}Tetrahedron>{3,3}
missing image!
- Tetrahedron.png -
25px
Triangle>{3}25pxPentagram>{5/2}25pxGreat icosahedron>{3,5/2}
missing image!
- Great icosahedron.png -
25px
| 191| 0| H4[5,3,3]| Great grand stellated 120-cell
align=center BGCOLOR="#ffe0e0"| Great grand stellated 120-cell
Image:Schläfli-Hess polychoron-wireframe-1.png>75pxImage:ortho solid 016-uniform polychoron p33-t0.png>75pxnodenodenoderatnode_1}}Great stellated dodecahedron>{5/2,3}
missing image!
- Great stellated dodecahedron.png -
25px
Pentagram>{5/2}25pxTriangle>{3}25pxTetrahedron>{3,3}
missing image!
- Tetrahedron.png -
25px
| 191| 0| H4[5,3,3]| Grand 600-cell
There are 4 failed potential regular star 4-polytopes permutations: {3,5/2,3}, {4,3,5/2}, {5/2,3,4}, {5/2,3,5/2}. Their cells and vertex figures exist, but they do not cover a hypersphere with a finite number of repetitions.

Skew 4-polytopes

{{Expand section|date=January 2024}}In addition to the 16 planar 4-polytopes above there are 18 finite skew polytopes.{{sfnp|McMullen|2004}} One of these is obtained as the Petrial of the tesseract, and the other 17 can be formed by applying the kappa operation to the planar polytopes and the Petrial of the tesseract.

Ranks 5 and higher

5-polytopes can be given the symbol {p,q,r,s} where {p,q,r} is the 4-face type, {p,q} is the cell type, {p} is the face type, and {s} is the face figure, {r,s} is the edge figure, and {q,r,s} is the vertex figure.
A vertex figure (of a 5-polytope) is a 4-polytope, seen by the arrangement of neighboring vertices to each vertex. An edge figure (of a 5-polytope) is a polyhedron, seen by the arrangement of faces around each edge. A face figure (of a 5-polytope) is a polygon, seen by the arrangement of cells around each face.
A regular 5-polytope {p,q,r,s} exists only if {p,q,r} and {q,r,s} are regular 4-polytopes.The space it fits in is based on the expression:
frac{cos^2left(frac{pi}{q}right)}{sin^2left(frac{pi}{p}right)} + frac{cos^2left(frac{pi}{r}right)}{sin^2left(frac{pi}{s}right)}
< 1 : Spherical 4-space tessellation or 5-space polytope = 1 : Euclidean 4-space tessellation > 1 : hyperbolic 4-space tessellation
Enumeration of these constraints produce 3 convex polytopes, no star polytopes, 3 tessellations of Euclidean 4-space, and 5 tessellations of paracompact hyperbolic 4-space. The only no non-convex regular polytopes for ranks 5 and higher are skews.

Convex

In dimensions 5 and higher, there are only three kinds of convex regular polytopes.{{sfnp|Coxeter|1973|loc=Table I: Regular polytopes, (iii) The three regular polytopes in {{mvar|n}} dimensions (n>=5), pp. 294–295}}{| class="wikitable"!Name!SchläfliSymbol{p1,...,pn−1}!Coxeter!k-faces!Facettype!Vertexfigure!Dual
BGCOLOR="#e0e0e0" align=center
Simplex>n-simplex{3n−1}{{CDD33}}...{{CDDnodenode}}binomial coefficient>|Self-dual
BGCOLOR="#ffe0e0" align=center
Hypercube>n-cube{4,3n−2}{{CDD43}}...{{CDDnodenode}}2^{n-k}{n choose k}{4,3n−3}{3n−2}n-orthoplex
BGCOLOR="#e0e0ff" align=center
Cross-polytope>n-orthoplex{3n−2,4}{{CDD33}}...{{CDDnodenode}}2^{k+1}{n choose {k+1}}{3n−2}{3n−3,4}n-cube
There are also improper cases where some numbers in the Schläfli symbol are 2. For example, {p,q,r,...2} is an improper regular spherical polytope whenever {p,q,r...} is a regular spherical polytope, and {2,...p,q,r} is an improper regular spherical polytope whenever {...p,q,r} is a regular spherical polytope. Such polytopes may also be used as facets, yielding forms such as {p,q,...2...y,z}.">

5 dimensions{| class"wikitable"

!Name!SchläfliSymbol{p,q,r,s}Coxeter!Facets{p,q,r}!Cells{p,q}!Faces{p}!Edges!Vertices!Facefigure{s}!Edgefigure{r,s}!Vertexfigure{q,r,s}
BGCOLOR="#e0e0e0" align=center|5-simplex
node_1nodenodenodenode}}6{3,3,3}15{3,3}20{3}156{3}{3,3}{3,3,3}
BGCOLOR="#ffe0e0" align=center|5-cube
node_1nodenodenodenode}}10{4,3,3}40{4,3}80{4}8032{3}{3,3}{3,3,3}
BGCOLOR="#e0e0ff" align=center|5-orthoplex
node_1nodenodenodenode}}32{3,3,3}80{3,3}80{3}4010{4}{3,4}{3,3,4}
{| class=wikitable align=center valign=top
Image:5-simplex t0.svg>150px5-simplexImage:5-cube graph.svg>150px5-cube150px)5-orthoplex

6 dimensions{| classwikitable

!Name!!Schläfli!!Vertices!!Edges!!Faces!!Cells!!4-faces||5-faces!!χ BGCOLOR="#e0e0e0" align=center
6-simplex>|0
BGCOLOR="#ffe0e0" align=center
6-cube>|0
BGCOLOR="#e0e0ff" align=center
6-orthoplex>|0
{| class=wikitable align=center valign=top
Image:6-simplex t0.svg>150px6-simplexImage:6-cube graph.svg>150px6-cube150px)6-orthoplex

7 dimensions{| classwikitable

!Name!!Schläfli!!Vertices!!Edges!!Faces!!Cells!!4-faces||5-faces!!6-faces!!χ BGCOLOR="#e0e0e0" align=center
7-simplex>|2
BGCOLOR="#ffe0e0" align=center
7-cube>|2
BGCOLOR="#e0e0ff" align=center
7-orthoplex>|2
{| class=wikitable align=center valign=top
Image:7-simplex t0.svg>150px7-simplexImage:7-cube graph.svg>150px7-cube150px)7-orthoplex

8 dimensions{| classwikitable

!Name!!Schläfli!!Vertices!!Edges!!Faces!!Cells!!4-faces||5-faces!!6-faces!!7-faces!!χ BGCOLOR="#e0e0e0" align=center
8-simplex>|0
BGCOLOR="#ffe0e0" align=center
8-cube>|0
BGCOLOR="#e0e0ff" align=center
8-orthoplex>|0
{| class=wikitable align=center valign=top
Image:8-simplex t0.svg>150px8-simplexImage:8-cube.svg>150px8-cube150px)8-orthoplex

9 dimensions{| classwikitable

!Name!!Schläfli!!Vertices!!Edges!!Faces!!Cells!!4-faces||5-faces!!6-faces!!7-faces!!8-faces!!χ BGCOLOR="#e0e0e0" align=center
9-simplex>|2
BGCOLOR="#ffe0e0" align=center
9-cube>|2
BGCOLOR="#e0e0ff" align=center
9-orthoplex>|2
{| class=wikitable align=center valign=top
Image:9-simplex t0.svg>150px9-simplexImage:9-cube.svg>150px9-cube150px)9-orthoplex

10 dimensions{| classwikitable

!Name!!Schläfli!!Vertices!!Edges!!Faces!!Cells!!4-faces||5-faces!!6-faces!!7-faces!!8-faces!!9-faces!!χ BGCOLOR="#e0e0e0" align=center
10-simplex>|0
BGCOLOR="#ffe0e0" align=center
10-cube>|0
BGCOLOR="#e0e0ff" align=center
10-orthoplex>|0
{| class=wikitable align=center valign=top
Image:10-simplex t0.svg>150px10-simplex150px)10-cube150px)10-orthoplex

Star polytopes

There are no regular star polytopes of rank 5 or higher, with the exception of degenerate polytopes created by the star product of lower rank star polytopes. {{abbr|e.g.}} hosotopes and ditopes.

Regular projective polytopes

A projective regular {{math|({{mvar|n}}+1)}}-polytope exists when an original regular {{mvar|n}}-spherical tessellation, {p,q,...}, is centrally symmetric. Such a polytope is named hemi-{p,q,...}, and contain half as many elements. Coxeter gives a symbol {p,q,...}/2, while McMullen writes {p,q,...}h/2 with h as the coxeter number.{{sfnp|McMullen|Schulte|2002|loc="6C Projective Regular Polytopes" pp. 162-165}}Even-sided regular polygons have hemi-2n-gon projective polygons, {2p}/2.There are 4 regular projective polyhedra related to 4 of 5 Platonic solids.The hemi-cube and hemi-octahedron generalize as hemi-{{mvar|n}}-cubes and hemi-{{mvar|n}}-orthoplexes to any rank.

Regular projective polyhedra{| classwikitable|+ rank 3 regular hemi-polytopes

!Name||CoxeterMcMullen||Image||Faces||Edges||Vertices||χ align=center!Hemi-cube||{4,3}/2{4,3}3
60px)3641
align=center!Hemi-octahedron||{3,4}/2{3,4}3
60px)4631
align=center!Hemi-dodecahedron||{5,3}/2{5,3}5
60px)615101
align=center!Hemi-icosahedron||{3,5}/2{3,5}5
60px)101561

Regular projective 4-polytopes

5 of 6 convex regular 4-polytopes are centrally symmetric generating projective 4-polytopes. The 3 special cases are hemi-24-cell, hemi-600-cell, and hemi-120-cell.{| class=wikitable|+ Rank 4 regular hemi-polytopes!Name||Coxetersymbol||McMullenSymbol||Cells||Faces||Edges||Vertices||χ align=center!Hemi-tesseract
{4,3,3}/2{4,3,3}4| 0
align=center!Hemi-16-cell
{3,3,4}/2{3,3,4}4| 0
align=center!Hemi-24-cell
{3,4,3}/2{3,4,3}6| 0
align=center!Hemi-120-cell
{5,3,3}/2{5,3,3}15| 0
align=center!Hemi-600-cell
{3,3,5}/2{3,3,5}15| 0

Regular projective 5-polytopes

Only 2 of 3 regular spereical polytopes are centrally symmetric for ranks 5 or higher: they are the hemi versions of the regular hypercube and orthoplex. They are tabulated below for rank 5, for example:{| class="wikitable"!Name
Schläfli symbol>Euler characteristic>χ
align=center!hemi-penteract
|1
align=center!hemi-pentacross
|1

Apeirotopes

An apeirotope or infinite polytope is a polytope which has infinitely many facets. An {{mvar|n}}-apeirotope is an infinite {{mvar|n}}-polytope: a 2-apeirotope or apeirogon is an infinite polygon, a 3-apeirotope or apeirohedron is an infinite polyhedron, etc.There are two main geometric classes of apeirotope:JOURNAL, Grünbaum, B., Regular Polyhedra—Old and New, Aequationes Mathematicae, 16, 1977, 1–2, 1–20, 10.1007/BF01836414, 125049930,
  • Regular honeycombs in {{mvar|n}} dimensions, which completely fill an {{mvar|n}}-dimensional space.
  • Regular skew apeirotopes, comprising an {{mvar|n}}-dimensional manifold in a higher space.

2-apeirotopes (apeirogons)

The straight apeirogon is a regular tessellation of the line, subdividing it into infinitely many equal segments. It has infinitely many vertices and edges. Its Schläfli symbol is {∞}, and Coxeter diagram {{CDD|node_1|infin|node}}....(File:Regular apeirogon.svg|320px)...It exists as the limit of the {{mvar|p}}-gon as {{mvar|p}} tends to infinity, as follows:{| class="wikitable" style="text-align:center;" bgcolor="#e0e0e0" valign="top"!Name|Monogon|Digon
Equilateral triangle>Triangle|Square|Pentagon|Hexagon|HeptagonRegular polygon>p-gon|Apeirogon
bgcolor="#ffd0d0"!Schläfli
{1}{2}|{3}|{4}|{5}|{6}|{7}|{p}{∞}
!Symmetry|D1, [ ]|D2, [2]
|[p]
!Coxeter
node}} or {{CDD2x|node}}node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}node_1node}}
!Image
60px)60px)60px)60px)60px)60px)60px)|60px)
Apeirogons in the hyperbolic plane, most notably the regular apeirogon, {∞}, can have a curvature just like finite polygons of the Euclidean plane, with the vertices circumscribed by horocycles or hypercycles rather than circles.Regular apeirogons that are scaled to converge at infinity have the symbol {∞} and exist on horocycles, while more generally they can exist on hypercycles.{| class=wikitable!{∞}!{πi/λ}
160px)Apeirogon on horocycle160px)Apeirogon on hypercycle
Above are two regular hyperbolic apeirogons in the Poincaré disk model, the right one shows perpendicular reflection lines of divergent fundamental domains, separated by length λ.

Skew apeirogons

A skew apeirogon in two dimensions forms a zig-zag line in the plane. If the zig-zag is even and symmetrical, then the apeirogon is regular.Skew apeirogons can be constructed in any number of dimensions. In three dimensions, a regular skew apeirogon traces out a helical spiral and may be either left- or right-handed.{| class=wikitable!2 dimensions!3 dimensions align=center
400px)Zig-zag apeirogon160px)Helix apeirogon

2-apeirotopes (apeirohedra)

Euclidean tilings

There are three regular tessellations of the plane.{| class=wikitable!Name!Square tiling(quadrille)!Triangular tiling(deltille)!Hexagonal tiling(hextille) align=center!Symmetry|p4m, [4,4], (*442)
p6m, [6,3], (*632)
align=center!Schläfli {p,q}|{4,4}|{3,6}|{6,3}
align=center!Coxeter diagram
node_1nodenode}}nodenodenode_1}}node_1nodenode}}
align=center!Image
100px)100px)100px)
There are two improper regular tilings: {∞,2}, an apeirogonal dihedron, made from two apeirogons, each filling half the plane; and secondly, its dual, {2,∞}, an apeirogonal hosohedron, seen as an infinite set of parallel lines.{| class=wikitable align=center
210px)Order-2 apeirogonal tiling, {{CDD>node_1nodenode}}240px)Apeirogonal hosohedron, {{CDD>node_1nodenode}}

Euclidean star-tilings

There are no regular plane tilings of star polygons. There are many enumerations that fit in the plane (1/p + 1/q = 1/2), like {8/3,8}, {10/3,5}, {5/2,10}, {12/5,12}, etc., but none repeat periodically.

Hyperbolic tilings

Tessellations of hyperbolic 2-space are hyperbolic tilings. There are infinitely many regular tilings in H2. As stated above, every positive integer pair {p,q} such that 1/p + 1/q < 1/2 gives a hyperbolic tiling. In fact, for the general Schwarz triangle (pqr) the same holds true for 1/p + 1/q + 1/r < 1.There are a number of different ways to display the hyperbolic plane, including the Poincaré disc model which maps the plane into a circle, as shown below. It should be recognized that all of the polygon faces in the tilings below are equal-sized and only appear to get smaller near the edges due to the projection applied, very similar to the effect of a camera fisheye lens.There are infinitely many flat regular 3-apeirotopes (apeirohedra) as regular tilings of the hyperbolic plane, of the form {p,q}, with p+q

- content above as imported from Wikipedia
- "List of regular polytopes#Hyperbolic tilings" does not exist on GetWiki (yet)
- time: 7:17am EDT - Sat, May 18 2024
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 23 MAY 2022
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
CONNECT