SUPPORT THE WORK

GetWiki

Hyperon

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
Hyperon
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{Short description|Type of strange baryon}}{{Distinguish|Hyperion (disambiguation)}}{{Standard model of particle physics}}In particle physics, a hyperon is any baryon containing one or more strange quarks, but no charm, bottom, or top quark.BOOK, Greiner, Walter, An Advanced Course in Modern Nuclear Physics, 581, 316–342, Arias, J.M., Lozano, M., Greiner2001, Structure of vacuum and elementary matter: from superheavies via hypermatter to antimatter., 10.1007/3-540-44620-6_11, Lecture Notes in Physics, 2001, 978-3-540-42409-3, This form of matter may exist in a stable form within the core of some neutron stars.{{citation |title=Phase Transition to Hyperon Matter in Neutron Stars |last1=Schaffner-Bielich |first1=Jürgen |last2=Hanauske |first2=Matthias |last3=Stöcker |first3=Horst |last4=Greiner |first4=Walter |journal=Physical Review Letters |display-authors=1 |volume=89 |issue=17 |pages=171101 |id=171101 |year=2002 |postscript= |doi=10.1103/PhysRevLett.89.171101 |pmid=12398654 |bibcode=2002PhRvL..89q1101S |arxiv=astro-ph/0005490| s2cid=18759347 }} Hyperons are sometimes generically represented by the symbol Y.JOURNAL, Tolos, L., Fabbietti, L., Strangeness in nuclei and neutron stars, Progress in Particle and Nuclear Physics, May 2020, 112, 41, 10.1016/j.ppnp.2020.103770, 2002.09223, 2020PrPNP.11203770T, 211252559,

History and research

The first research into hyperons happened in the 1950s and spurred physicists on to the creation of an organized classification of particles.The term was coined by French physicist Louis Leprince-Ringuet in 1953,JOURNAL, Degrange, Bernard, Fontaine, Gérard, Fleury, Patrick, 2013, Tracking Louis Leprince-Ringuet's contributions to cosmic-ray physics,weblink Physics Today, en, 66, 6, 8, 10.1063/PT.3.1989, 2013PhT....66f...8D, 0031-9228, CONFERENCE, Ravel, Olivier, 2013, Ormes, Jonathan F., Early cosmic ray research in France,weblink Centenary Symposium 2012: Discovery of Cosmic Rays, AIP Conference Proceedings, 1516, Denver, United States, American Institute of Physics, 67–71, 10.1063/1.4792542, 2013AIPC.1516...67R, 978-0-7354-1137-1, and announced for the first time at the cosmic ray conference at Bagnères de Bigorre in July of that year, agreed upon by Leprince-Ringuet, Bruno Rossi, C.F. Powell, William B. Fretter and Bernard Peters.JOURNAL, The 1953 Cosmic Ray Conference at Bagnères de Bigorre: the Birth of Sub Atomic Physics, J.W. Cronin, 10.1140/epjh/e2011-20014-4, 2011, 36, 183–201, The European Physical Journal H, 2, 1111.5338, 2011EPJH...36..183C, 119105540, See in particular Fig. 5.Today, research in this area is carried out on data taken at many facilities around the world, including CERN, Fermilab, SLAC, JLAB, Brookhaven National Laboratory, KEK, GSI and others. Physics topics include searches for CP violation, measurements of spin, studies of excited states (commonly referred to as spectroscopy), and hunts for exotic forms such as pentaquarks and dibaryons.

Properties and behavior

230px|thumb|A combination of three u, d or s-quarks with a total spin of 3/2 form the so-called baryon decuplet. The lower six are hyperons.Being baryons, all hyperons are fermions. That is, they have half-integer spin and obey Fermi–Dirac statistics. Hyperons all interact via the strong nuclear force, making them types of hadron. They are composed of three light quarks, at least one of which is a strange quark, which makes them strange baryons.Excited hyperon resonances and ground-state hyperons with a '*' included in their notation decay via the strong interaction. For Ω⁻ as well as the lighter hyperons this decay mode is not possible given the particle masses and the conservation of flavor and isospin necessary in strong interactions. Instead, these decay weakly with non-conserved parity. An exception to this is the Σ⁰ which decays electromagnetically into Λ on account of carrying the same flavor quantum numbers. The type of interaction through which these decays occur determine the average lifetime, which is why weakly decaying hyperons are significantly more long-lived than those that decay through strong or electromagnetic interactions.BOOK, Martin, B. R., Particle physics, 2017, Chichester, West Sussex, United Kingdom, 9781118911907, Fourth, ">

List{| class"wikitable sortable"|+Hyperons

! class=unsortable | Particle! Symbol ! Makeup ! Rest mass (MeV/c2)! Isospin, I! Spin, parity,JP! Q (e)! S! C! B'! Mean lifetime (s)! class=unsortable | Commonly decays to
Lambda baryon>LambdaHTTP://PDG.LBL.GOV/2007/LISTINGS/S018.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – LAMBDA ARCHIVE-URL=HTTPS://WEB.ARCHIVE.ORG/WEB/20080910175117/HTTP://PDG.LBL.GOV/2007/LISTINGS/S018.PDF URL-STATUS=DEAD, link=yes|Lambda0}}link=yeslink=yeslink=yes|Strange quark}}| 1 115.683(6)| 01|2}}+| 0| −1| 0| 02.60ACCESS-DATE=2008-04-20 ARCHIVE-URL=HTTPS://WEB.ARCHIVE.ORG/WEB/20080228011850/HTTP://FILER.CASE.EDU/SJR16/ADVANCED/EXTRAS_PARTICLEPHYS.HTML, 2008-02-28, {{SubatomicParticleProton+}} + {{SubatomicParticlePion-}}}} or {{nowraplink=yeslink=yes|Pion0}}}}
Lambda baryon>Lambda resonanceHTTP://PDG.LBL.GOV/2007/LISTINGS/S018.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – LAMBDA ARCHIVE-URL=HTTPS://WEB.ARCHIVE.ORG/WEB/20080910175117/HTTP://PDG.LBL.GOV/2007/LISTINGS/S018.PDF URL-STATUS=DEAD, link=yes|Lambda}}(1405)link=yeslink=yeslink=yes|Strange quark}}| 1 405.1(+1.3 -1.0)| 01|2}}−| 0| −1| 0| 0| {{SubatomicParticleSigma}} + {{SubatomicParticlePion}}}}
Lambda baryon>Lambda resonanceHTTP://PDG.LBL.GOV/2007/LISTINGS/S018.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – LAMBDA ARCHIVE-URL=HTTPS://WEB.ARCHIVE.ORG/WEB/20080910175117/HTTP://PDG.LBL.GOV/2007/LISTINGS/S018.PDF URL-STATUS=DEAD, link=yes|Lambda}}(1520)link=yeslink=yeslink=yes|Strange quark}}| 1 519(1)| 03|2}}−| 0| −1| 0| 0| {{SubatomicParticleNucleon}} + {{SubatomicParticleKaon}}}} or {{nowraplink=yeslink=yes{{SubatomicParticleLambda}} + 2{{SubatomicParticlepion}}}}
Sigma baryon>SigmaHTTP://PDG.LBL.GOV/2007/LISTINGS/S019.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – SIGMA+ ARCHIVE-URL=HTTPS://WEB.ARCHIVE.ORG/WEB/20080910175104/HTTP://PDG.LBL.GOV/2007/LISTINGS/S019.PDF URL-STATUS=DEAD, link=yes|Sigma+}}link=yeslink=yeslink=yes|Strange quark}}| 1 189.37(7)| 11|2}}+| +1| −1| 0| 08.018e=-11}}{{SubatomicParticleProton+}} + {{SubatomicParticlePion0}}}} or {{nowraplink=yeslink=yes|Pion+}}}}
Sigma baryon>SigmaHTTP://PDG.LBL.GOV/2007/LISTINGS/S021.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – SIGMA0 ARCHIVE-URL=HTTPS://WEB.ARCHIVE.ORG/WEB/20080910175105/HTTP://PDG.LBL.GOV/2007/LISTINGS/S021.PDF URL-STATUS=DEAD, link=yes|Sigma0}}link=yeslink=yeslink=yes|Strange quark}}| 1 192.642(24)| 11|2}}+| 0| −1| 0| 07.4e=-20}}{{SubatomicParticleLambda0}} + {{SubatomicParticlePhoton}}}}
Sigma baryon>SigmaHTTP://PDG.LBL.GOV/2007/LISTINGS/S020.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – SIGMA- ARCHIVE-URL=HTTPS://WEB.ARCHIVE.ORG/WEB/20080910175103/HTTP://PDG.LBL.GOV/2007/LISTINGS/S020.PDF URL-STATUS=DEAD, link=yes|Sigma-}}link=yeslink=yeslink=yes|Strange quark}}| 1 197.449(30)| 11|2}}+| −1| −1| 0| 01.479e=-10}}{{SubatomicParticleNeutron0}} + {{SubatomicParticlePion-}}}}
Sigma baryon>Sigma resonanceHTTP://PDG.LBL.GOV/2007/LISTINGS/B043.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – SIGMA(1385) ARCHIVE-URL=HTTPS://WEB.ARCHIVE.ORG/WEB/20080910175104/HTTP://PDG.LBL.GOV/2007/LISTINGS/B043.PDF URL-STATUS=DEAD, link=yes|Sigma*+}}(1385)link=yeslink=yeslink=yes|Strange quark}}| 1 382.8(4)| 13|2}}+| +1| −1| 0| 0| {{SubatomicParticlePion}}}} or {{nowrapSigma}} + {{SubatomicParticle|Pion}}}}
Sigma baryon>Sigma resonancelink=yes|Sigma*0}}(1385)link=yeslink=yeslink=yes|Strange quark}}| 1 383.7±1.0| 13|2}}+| 0| −1| 0| 0| {{SubatomicParticlePion}}}} or {{nowrapSigma}} + {{SubatomicParticle|Pion}}}}
Sigma baryon>Sigma resonancelink=yes|Sigma*-}}(1385)link=yeslink=yeslink=yes|Strange quark}}| 1 387.2(5)| 13|2}}+| −1| −1| 0| 0| {{SubatomicParticlePion}}}} or {{nowrapSigma}} + {{SubatomicParticle|Pion}}}}
Xi baryon>XiHTTP://PDG.LBL.GOV/2007/LISTINGS/S023.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – XI0, 2008-04-20, link=yes|Xi0}}link=yeslink=yeslink=yes|Strange quark}}| 1 314.86(20)1|2}}1|2}}+| 0| −2| 0| 02.90e=-10}}{{SubatomicParticleLambda0}} + {{SubatomicParticlePion0}}}}
Xi baryon>XiHTTP://PDG.LBL.GOV/2007/LISTINGS/S022.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – XI-, 2008-04-20, link=yes|Xi-}}link=yeslink=yeslink=yes|Strange quark}}| 1 321.71(7)1|2}}1|2}}+| −1| −2| 0| 01.639e=-10}}{{SubatomicParticleLambda0}} + {{SubatomicParticlePion-}}}}
Xi baryon>Xi resonanceHTTP://PDG.LBL.GOV/2007/LISTINGS/B049.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – XI(1530), 2008-04-20, link=yes|Xi*0}}(1530)link=yeslink=yeslink=yes|Strange quark}}| 1 531.80(32)1|2}}3|2}}+| 0| −2| 0| 0| {{SubatomicParticleXi}} + {{SubatomicParticlePion}}}}
Xi baryon>Xi resonancelink=yes|Xi*-}}(1530)link=yeslink=yeslink=yes|Strange quark}}| 1 535.0(6)1|2}}3|2}}+| −1| −2| 0| 0| {{SubatomicParticleXi}} + {{SubatomicParticlePion}}}}
Omega baryon>OmegaHTTP://PDG.LBL.GOV/2007/LISTINGS/S024.PDF >TITLE=PARTICLE DATA GROUPS: 2006 REVIEW OF PARTICLE PHYSICS – OMEGA-, 2008-04-20, link=yes|Omega-}}link=yeslink=yeslink=yes|Strange quark}}| 1 672.45(29)| 0 3|2}}+| −1| −3| 0| 08.21e=-11}}{{SubatomicParticleLambda0}} + {{SubatomicParticleKaon-}}}} or {{nowraplink=yeslink=yes{{SubatomicParticleXi-}} + {{SubatomicParticlePion0}}}}
Notes:
  • Since strangeness is conserved by the strong interactions, some ground-state hyperons cannot decay strongly. However, they do participate in strong interactions.
  • {{SubatomicParticle|Lambda0}} may also decay on rare occurrences via these processes:
  • : {{SubatomicParticle|Lambda0}} → {{SubatomicParticle|Proton+}} + {{SubatomicParticle|Electron}} + {{SubatomicParticle|Electron antineutrino}}
  • : {{SubatomicParticle|Lambda0}} → {{SubatomicParticle|Proton+}} + {{SubatomicParticle|Muon}} + {{SubatomicParticle|Muon antineutrino}}
  • {{SubatomicParticle|Xi0}} and {{SubatomicParticle|Xi-}} are also known as "cascade" hyperons, since they go through a two-step cascading decay into a nucleon.
  • The {{SubatomicParticle|Omega-}} has a baryon number of +1 and hypercharge of −2, giving it strangeness of −3. It takes multiple flavor-changing weak decays for it to decay into a proton or neutron. Murray Gell-Mann's and Yuval Ne'eman's SU(3) model (sometimes called the Eightfold Way) predicted this hyperon's existence, mass and that it will only undergo weak decay processes. Experimental evidence for its existence was discovered in 1964 at Brookhaven National Laboratory. Further examples of its formation and observation using particle accelerators confirmed the SU(3) model.

See also

{{Wiktionary|hyperon}}{{cols}} {{colend}}

References

{{Reflist}}
  • BOOK, Henry, Semat, John R., Albright, 1984, Introduction to Atomic and Nuclear Physics, Chapman and Hall, 0-412-15670-9,
{{particles}}{{Authority control}}

- content above as imported from Wikipedia
- "Hyperon" does not exist on GetWiki (yet)
- time: 9:20am EDT - Sat, May 18 2024
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 23 MAY 2022
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
CONNECT