SUPPORT THE WORK

GetWiki

Wigner D-matrix

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
Wigner D-matrix
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{Short description|Irreducible representation of the rotation group SO}}The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter {{mvar|D}} stands for Darstellung, which means “representation” in German.

Definition of the Wigner D-matrix

Let {{math|Jx, Jy, Jz}} be generators of the Lie algebra of SU(2) and SO(3). In quantum mechanics, these three operators are the components of a vector operator known as angular momentum. Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor.In all cases, the three operators satisfy the following commutation relations,
[J_x,J_y] = i J_z,quad [J_z,J_x] = i J_y,quad [J_y,J_z] = i J_x,
where i is the purely imaginary number and Planck’s constant {{mvar|ħ}} has been set equal to one. The Casimir operator
J^2 = J_x^2 + J_y^2 + J_z^2
commutes with all generators of the Lie algebra. Hence, it may be diagonalized together with {{mvar|Jz}}.This defines the spherical basis used here. That is, there is a complete set of kets (i.e. orthonormal basis of joint eigenvectors labelled by quantum numbers that define the eigenvalues) with
J^2 |jmrangle = j(j+1) |jmrangle,quad J_z |jmrangle = m |jmrangle,
where j = 0, 1/2, 1, 3/2, 2, ... for SU(2), and j = 0, 1, 2, ... for SO(3). In both cases, {{math|m {{=}} −j, −j + 1, ..., j}}.A 3-dimensional rotation operator can be written as
mathcal{R}(alpha,beta,gamma) = e^{-ialpha J_z}e^{-ibeta J_y}e^{-igamma J_z},
where α, β, γ are Euler angles (characterized by the keywords: z-y-z convention, right-handed frame, right-hand screw rule, active interpretation).The Wigner D-matrix is a unitary square matrix of dimension 2j + 1 in this spherical basis with elements
D^j_{m’m}(alpha,beta,gamma) equiv langle jm’ | mathcal{R}(alpha,beta,gamma)| jm rangle =e^{-im’alpha } d^j_{m’m}(beta)e^{-i mgamma},
where
d^j_{m’m}(beta)= langle jm’ |e^{-ibeta J_y} | jm rangle = D^j_{m’m}(0,beta,0)
is an element of the orthogonal Wigner’s (small) d-matrix.That is, in this basis,
D^j_{m’m}(alpha,0,0) = e^{-im’alpha } delta_{m’m}
is diagonal, like the γ matrix factor, but unlike the above β factor.

Wigner (small) d-matrix

Wigner gave the following expression:BOOK, E. P., Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Vieweg Verlag, Braunschweig, 1951, 1931, 602430512, Translated into English by BOOK, J.J., Griffin, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Elsevier, 978-1-4832-7576-5, 2013, {{GBurl, UITNCgAAQBAJ, PR9, |orig-year=1959 }}
d^j_{m’m}(beta) =[(j+m’)!(j-m’)!(j+m)!(j-m)!]^{frac{1}{2}} sum_{s=s_{mathrm{min}}}^{s_{mathrm{max}}} left[frac{(-1)^{m’-m+s} left(cosfrac{beta}{2}right)^{2j+m-m’-2s}left(sinfrac{beta}{2}right)^{m’-m+2s}}{(j+m-s)!s!(m’-m+s)!(j-m’-s)!} right].
The sum over s is over such values that the factorials are nonnegative, i.e. s_{mathrm{min}}=mathrm{max}(0,m-m’), s_{mathrm{max}}=mathrm{min}(j+m,j-m’).Note: The d-matrix elements defined here are real. In the often-used z-x-z convention of Euler angles, the factor (-1)^{m’-m+s} in this formula is replaced by (-1)^s i^{m-m’}, causing half of the functions to be purely imaginary. The realness of the d-matrix elements is one of the reasons that the z-y-z convention, used in this article, is usually preferred in quantum mechanical applications.The d-matrix elements are related to Jacobi polynomials P^{(a,b)}_k(cosbeta) with nonnegative a and b.BOOK, L. C., Biedenharn, J. D., Louck, Angular Momentum in Quantum Physics, Addison-Wesley, Reading, 1981, 0-201-13507-8, Let
k = min(j+m, j-m, j+m’, j-m’).
If
k = begin{cases}
j+m: & a=m’-m;quad lambda=m’-m
j-m: & a=m-m’;quad lambda= 0
j+m’: & a=m-m’;quad lambda= 0
j-m’: & a=m’-m;quad lambda=m’-m
end{cases}Then, with b=2j-2k-a, the relation is
d^j_{m’m}(beta) = (-1)^{lambda} binom{2j-k}{k+a}^{frac{1}{2}} binom{k+b}{b}^{-frac{1}{2}} left(sinfrac{beta}{2}right)^a left(cosfrac{beta}{2}right)^b P^{(a,b)}_k(cosbeta),
where a,b ge 0.

Properties of the Wigner D-matrix

The complex conjugate of the D-matrix satisfies a number of differential properties that can be formulated concisely by introducing the following operators with (x, y, z) = (1, 2, 3),
begin{align}
hat{mathcal{J}}_1 &= i left( cos alpha cot beta frac{partial}{partial alpha} + sin alpha {partial over partial beta} - {cos alpha over sin beta} {partial over partial gamma} right) hat{mathcal{J}}_2 &= i left( sin alpha cot beta {partial over partial alpha} - cos alpha {partial over partial beta} - {sin alpha over sin beta} {partial over partial gamma} right) hat{mathcal{J}}_3 &= - i {partial over partial alpha}end{align}which have quantum mechanical meaning: they are space-fixed rigid rotor angular momentum operators.Further,
begin{align}
hat{mathcal{P}}_1 &= i left( {cos gamma over sin beta}{partial over partial alpha } - sin gamma {partial over partial beta }- cot beta cos gamma {partial over partial gamma} right)hat{mathcal{P}}_2 &= i left( - {sin gamma over sin beta} {partial over partial alpha} - cos gamma
{partial over partial beta} + cot beta sin gamma {partial over partial gamma} right)
hat{mathcal{P}}_3 &= - i {partialover partial gamma}, end{align}which have quantum mechanical meaning: they are body-fixed rigid rotor angular momentum operators.The operators satisfy the commutation relations
left[mathcal{J}_1, mathcal{J}_2right] = i mathcal{J}_3, qquad hbox{and}qquad left[mathcal{P}_1, mathcal{P}_2right] = -i mathcal{P}_3,
and the corresponding relations with the indices permuted cyclically. The mathcal{P}_i satisfy anomalous commutation relations (have a minus sign on the right hand side).
The two sets mutually commute,
left[mathcal{P}_i, mathcal{J}_jright] = 0,quad i, j = 1, 2, 3,
and the total operators squared are equal,
mathcal{J}^2 equiv mathcal{J}_1^2+ mathcal{J}_2^2 + mathcal{J}_3^2 = mathcal{P}^2 equiv mathcal{P}_1^2+ mathcal{P}_2^2 + mathcal{P}_3^2.
Their explicit form is,
mathcal{J}^2= mathcal{P}^2 =-frac{1}{sin^2beta} left( frac{partial^2}{partial alpha^2} +frac{partial^2}{partial gamma^2} -2cosbetafrac{partial^2}{partialalphapartial gamma} right)-frac{partial^2}{partial beta^2} -cotbetafrac{partial}{partial beta}.
The operators mathcal{J}_i act on the first (row) index of the D-matrix,
begin{align}
mathcal{J}_3 D^j_{m’m}(alpha,beta,gamma)^* &=m’ D^j_{m’m}(alpha,beta,gamma)^* (mathcal{J}_1 pm i mathcal{J}_2) D^j_{m’m}(alpha,beta,gamma)^* &= sqrt{j(j+1)-m’(m’pm 1)} D^j_{m’pm 1, m}(alpha,beta,gamma)^* end{align}The operators mathcal{P}_i act on the second (column) index of the D-matrix,
mathcal{P}_3 D^j_{m’m}(alpha,beta,gamma)^* = m D^j_{m’m}(alpha,beta,gamma)^* ,
and, because of the anomalous commutation relation the raising/lowering operators are defined with reversed signs,
(mathcal{P}_1 mp i mathcal{P}_2) D^j_{m’m}(alpha,beta,gamma)^* = sqrt{j(j+1)-m(mpm 1)} D^j_{m’, mpm1}(alpha,beta,gamma)^* .
Finally,
mathcal{J}^2 D^j_{m’m}(alpha,beta,gamma)^* =mathcal{P}^2 D^j_{m’m}(alpha,beta,gamma)^* = j(j+1) D^j_{m’m}(alpha,beta,gamma)^*.
In other words, the rows and columns of the (complex conjugate) Wigner D-matrix span irreducible representations of the isomorphic Lie algebras generated by {mathcal{J}_i} and {-mathcal{P}_i}.An important property of the Wigner D-matrix follows from the commutation of
mathcal{R}(alpha,beta,gamma) with the time reversal operator
{{mvar|T}},
langle jm’ | mathcal{R}(alpha,beta,gamma)| jm rangle = langle jm’ | T^{ dagger} mathcal{R}(alpha,beta,gamma) T| jm rangle =(-1)^{m’-m} langle j,-m’ | mathcal{R}(alpha,beta,gamma)| j,-m rangle^*,
or
D^j_{m’m}(alpha,beta,gamma) = (-1)^{m’-m} D^j_{-m’,-m}(alpha,beta,gamma)^*.
Here, we used that T is anti-unitary (hence the complex conjugation after moving T^dagger from ket to bra), T | jm rangle = (-1)^{j-m} | j,-m rangle and (-1)^{2j-m’-m} = (-1)^{m’-m}.A further symmetry implies
(-1)^{m’-m}D^{j}_{mm’}(alpha,beta,gamma)=D^{j}_{m’m}(gamma,beta,alpha)~.

Orthogonality relations

The Wigner D-matrix elements D^j_{mk}(alpha,beta,gamma) form a set of orthogonal functions of the Euler angles alpha, beta, and gamma:
int_0^{2pi} dalpha int_0^pi dbeta sin beta int_0^{2pi} dgamma ,, D^{j’}_{m’k’}(alpha,beta,gamma)^ast D^j_{mk}(alpha, beta, gamma) = frac{8pi^2}{2j+1} delta_{m’m}delta_{k’k}delta_{j’j}.
This is a special case of the Schur orthogonality relations.Crucially, by the Peter–Weyl theorem, they further form a complete set.The fact that D^j_{mk}(alpha,beta,gamma) are matrix elements of a unitary transformation from one spherical basis | lm rangle to another mathcal{R}(alpha,beta,gamma) | lm rangle is represented by the relations:BOOK, Rose, Morris Edgar, {{GBurl, 3lSiev-MnLQC, PR7, |title=Elementary theory of angular momentum|date=1995|publisher=Dover|isbn=0-486-68480-6|orig-year=1957|oclc=31374243}}
sum_k D^j_{m’k}(alpha, beta, gamma)^* D^j_{mk}(alpha, beta, gamma) = delta_{m,m’}, sum_k D^j_{k m’}(alpha, beta, gamma)^* D^j_{km}(alpha, beta, gamma) = delta_{m,m’}.
The group characters for SU(2) only depend on the rotation angle β, being class functions, so, then, independent of the axes of rotation,
chi^j (beta)equiv sum_m D^j_{mm}(beta)=sum_m d^j_{mm}(beta) = frac{sinleft (frac{(2j+1)beta}{2} right )}{sin left (frac{beta}{2} right )},
and consequently satisfy simpler orthogonality relations, through the Haar measure of the group,TECH REPORT, Schwinger, J.,www.osti.gov/biblio/4389568-angular-momentum, On Angular Momentum, Harvard University, Nuclear Development Associates, NYO-3071, TRN: US200506%%295, January 26, 1952, 10.2172/4389568,
frac{1}{pi} int _0^{2pi} dbeta sin^2 left (frac{beta}{2} right ) chi^j (beta) chi^{j’}(beta)= delta_{j’j}.
The completeness relation (worked out in the same reference, (3.95)) is
sum_j chi^j (beta) chi^j (beta’)= delta (beta -beta’),
whence, for beta’ =0,
sum_j chi^j (beta) (2j+1)= delta (beta ).

Kronecker product of Wigner D-matrices, Clebsch-Gordan series

The set of Kronecker product matrices
mathbf{D}^j(alpha,beta,gamma)otimes mathbf{D}^{j’}(alpha,beta,gamma)
forms a reducible matrix representation of the groups SO(3) and SU(2). Reduction into irreducible components is by the following equation:
D^j_{m k}(alpha,beta,gamma) D^{j’}_{m’ k’}(alpha,beta,gamma) =
sum_{J=|j-j’|}^{j+j’} langle j m j’ m’ | J left(m + m’right) rangle
langle j k j’ k’ | J left(k + k’right) rangle
D^J_{left(m + m’right) left(k + k’right)}(alpha,beta,gamma)
The symbol langle j_1 m_1 j_2 m_2 | j_3 m_3 rangle is a Clebsch–Gordan coefficient.

Relation to spherical harmonics and Legendre polynomials

For integer values of l, the D-matrix elements with second index equal to zero are proportionalto spherical harmonics and associated Legendre polynomials, normalized to unity and with Condon and Shortley phase convention:
D^{ell}_{m 0}(alpha,beta,gamma) = sqrt{frac{4pi}{2ell+1}} Y_{ell}^{m*} (beta, alpha ) = sqrt{frac{(ell-m)!}{(ell+m)!}} , P_ell^m ( cos{beta} ) , e^{-i m alpha }.This implies the following relationship for the d-matrix:
d^{ell}_{m 0}(beta) = sqrt{frac{(ell-m)!}{(ell+m)!}} , P_ell^m ( cos{beta} ).A rotation of spherical harmonics langle theta, phi| ell m’rangle then is effectively a composition of two rotations,
sum^ell_{m’=-ell} Y_{ell}^ {m’} (theta, phi ) ~ D^{ell}_{m’ ~m }(alpha,beta,gamma).
When both indices are set to zero, the Wigner D-matrix elements are given by ordinary Legendre polynomials:
D^{ell}_{0,0}(alpha,beta,gamma) = d^{ell}_{0,0}(beta) = P_{ell}(cosbeta).
In the present convention of Euler angles, alpha is a longitudinal angle and beta is a colatitudinal angle (spherical polar anglesin the physical definition of such angles). This is one of the reasons that the z-y-zconvention is used frequently in molecular physics.From the time-reversal property of the Wigner D-matrix follows immediately
left( Y_{ell}^m right) ^* = (-1)^m Y_{ell}^{-m}.There exists a more general relationship to the spin-weighted spherical harmonics:
D^{ell}_{m s}(alpha,beta,-gamma) =(-1)^s sqrtfrac{4pi}{2{ell}+1} {}_sY_{ell}^m(beta,alpha) e^{isgamma}.THESIS, M., Shiraishi, Appendix A: Spin-Weighted Spherical Harmonic Function,link.springer.com/content/pdf/bbm:978-4-431-54180-6/1.pdf, Probing the Early Universe with the CMB Scalar, Vector and Tensor Bispectrum, 2013, 978-4-431-54180-6, Nagoya University, PhD, 153–4,

Connection with transition probability under rotations

The absolute square of an element of the D-matrix,
F_{mm’}(beta) = | D^j_{mm’}(alpha,beta,gamma) |^2,
gives the probability that a system with spin j prepared in a state with spin projection m alongsome direction will be measured to have a spin projection m’ along a second direction at an angle betato the first direction. The set of quantities F_{mm’} itself forms a real symmetric matrix, thatdepends only on the Euler angle beta, as indicated.Remarkably, the eigenvalue problem for the F matrix can be solved completely:“MEMBERWIDE">LAST=MECKLER, Majorana formula, Physical Review, 1958, 111, 6doi=10.1103/PhysRev.111.1447, N.D. >LAST1=MERMIN LAST2=SCHWARZ, Joint distributions and local realism in the higher-spin Einstein-Podolsky-Rosen experiment, Foundations of Physics, 1982issue=2doi=10.1007/BF00736844, 121648820,
sum_{m’ = -j}^j F_{mm’}(beta) f^j_{ell}(m’) = P_{ell}(cosbeta) f^j_{ell}(m) qquad (ell = 0, 1, ldots, 2j).
Here, the eigenvector, f^j_{ell}(m), is a scaled and shifted discrete Chebyshev polynomial, and the corresponding eigenvalue, P_{ell}(cosbeta), is the Legendre polynomial.

Relation to Bessel functions

In the limit when ell gg m, m^prime we have
D^ell_{mm’}(alpha,beta,gamma) approx e^{-imalpha-im’gamma}J_{m-m’}(ellbeta)
where J_{m-m’}(ellbeta) is the Bessel function and ellbeta is finite.

List of d-matrix elements

Using sign convention of Wigner, et al. the d-matrix elements d^j_{m’m}(theta) for j = 1/2, 1, 3/2, and 2 are given below.for j = 1/2
begin{align}
d_{frac{1}{2},frac{1}{2}}^{frac{1}{2}} &= cos frac{theta}{2} [6pt]d_{frac{1}{2},-frac{1}{2}}^{frac{1}{2}} &= -sin frac{theta}{2}end{align}for j = 1
begin{align}
d_{1,1}^{1} &= frac{1}{2} (1+cos theta) [6pt]d_{1,0}^{1} &= -frac{1}{sqrt{2}} sin theta [6pt]d_{1,-1}^{1} &= frac{1}{2} (1-cos theta) [6pt]d_{0,0}^{1} &= cos thetaend{align}for j = 3/2
begin{align}
d_{frac{3}{2}, frac{3}{2}}^{frac{3}{2}} &= frac{1}{2} (1+cos theta) cos frac{theta}{2} [6pt]d_{frac{3}{2}, frac{1}{2}}^{frac{3}{2}} &= -frac{sqrt{3}}{2} (1+cos theta) sin frac{theta}{2} [6pt]d_{frac{3}{2},-frac{1}{2}}^{frac{3}{2}} &= frac{sqrt{3}}{2} (1-cos theta) cos frac{theta}{2} [6pt]d_{frac{3}{2},-frac{3}{2}}^{frac{3}{2}} &= -frac{1}{2} (1-cos theta) sin frac{theta}{2} [6pt]d_{frac{1}{2}, frac{1}{2}}^{frac{3}{2}} &= frac{1}{2} (3cos theta - 1) cos frac{theta}{2} [6pt]d_{frac{1}{2},-frac{1}{2}}^{frac{3}{2}} &= -frac{1}{2} (3cos theta + 1) sin frac{theta}{2}end{align}for j = 2JOURNAL, 10.1002/cmr.a.10061, Edén, M. journal = Concepts in Magnetic Resonance Part A issue=1 year=2003,
begin{align}
d_{2,2}^{2} &= frac{1}{4}left(1 +cos thetaright)^2 [6pt]d_{2,1}^{2} &= -frac{1}{2}sin theta left(1 + cos thetaright) [6pt]d_{2,0}^{2} &= sqrt{frac{3}{8}}sin^2 theta [6pt]d_{2,-1}^{2} &= -frac{1}{2}sin theta left(1 - cos thetaright) [6pt]d_{2,-2}^{2} &= frac{1}{4}left(1 -cos thetaright)^2 [6pt]d_{1,1}^{2} &= frac{1}{2}left(2cos^2theta + cos theta-1 right) [6pt]d_{1,0}^{2} &= -sqrt{frac{3}{8}} sin 2 theta [6pt]d_{1,-1}^{2} &= frac{1}{2}left(- 2cos^2theta + cos theta +1 right) [6pt]d_{0,0}^{2} &= frac{1}{2} left(3 cos^2 theta - 1right)end{align}Wigner d-matrix elements with swapped lower indices are found with the relation:
d_{m’, m}^j = (-1)^{m-m’}d_{m, m’}^j = d_{-m,-m’}^j.

Symmetries and special cases

begin{align}
d_{m’,m}^{j}(pi) &= (-1)^{j-m} delta_{m’,-m} [6pt]d_{m’,m}^{j}(pi-beta) &= (-1)^{j+m’} d_{m’,-m}^{j}(beta)[6pt]d_{m’,m}^{j}(pi+beta) &= (-1)^{j-m} d_{m’,-m}^{j}(beta)[6pt]d_{m’,m}^{j}(2pi+beta) &= (-1)^{2j} d_{m’,m}^{j}(beta)[6pt]d_{m’,m}^{j}(-beta) &= d_{m,m’}^{j}(beta) = (-1)^{m’-m} d_{m’,m}^{j}(beta)end{align}

See also

References

{{Reflist}}

External links

  • WEB, C., Amsler, et al. (Particle Data Group), PDG Table of Clebsch-Gordan Coefficients, Spherical Harmonics, and d-Functions, 2008, Physics Letters B667,pdg.lbl.gov/2008/reviews/clebrpp.pdf,


- content above as imported from Wikipedia
- "Wigner D-matrix" does not exist on GetWiki (yet)
- time: 7:34am EDT - Wed, May 22 2024
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 21 MAY 2024
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
CONNECT