SUPPORT THE WORK

GetWiki

Transition zone (Earth)

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
Transition zone (Earth)
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{short description|Part of the Earth's mantle}}The transition zone is part of the Earth's mantle, and is located between the lower mantle and the upper mantle, between a depth of 410 and 660 km (250 to 400 mi). The Earth's mantle, including the transition zone, consists primarily of peridotite, an ultramafic igneous rock.The mantle was divided into the upper mantle, transition zone, and lower mantle as a result of sudden seismic-velocity discontinuities at depths of 410 and 660 km (250 to 400 mi). This is thought to occur as a result of rearrangement of grains in olivine (which constitutes a large portion of peridotite) at a depth of 410 km, to form a denser crystal structure as a result of the increase in pressure with increasing depth. Below a depth of 660 km, evidence suggests due to pressure changes ringwoodite minerals change into two new denser phases, bridgmanite and periclase. This can be seen using body waves from earthquakes, which are converted, reflected or refracted at the boundary, and predicted from mineral physics, as the phase changes are temperature and density-dependent and hence depth dependent.

410 km discontinuity – phase transition

A peak is seen in seismological data at about 410 km as is predicted by the transition from α- to β-Mg2SiO4 (olivine to wadsleyite). From the Clapeyron slope, this change is predicted to occur at shallower depths in cold regions, such as where subducting slabs penetrate into the transition zone, and at greater depths in warmer regions, such as where mantle plumes pass through the transition zone.C.M.R. Fowler, The Solid Earth (2nd Edition), Cambridge University Press 2005. Therefore, the exact depth of the "410 km discontinuity" can vary.

660 km discontinuity – phase transition

The 660 km discontinuity appears in PP precursors (a wave which reflects off the discontinuity once) only in certain regions but is always apparent in SS precursors. It is seen as single and double reflections in receiver functions for P to S conversions over a broad range of depths (640–720 km, or 397–447 mi). The Clapeyron slope predicts a deeper discontinuity in cold regions and a shallower discontinuity in hot regions. This discontinuity is generally linked to the transition from ringwoodite to bridgmanite and periclase.JOURNAL, Ito, E, Takahashi, E, Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications, Journal of Geophysical Research: Solid Earth, 1989, 94, B8, 10637–10646, 10.1029/jb094ib08p10637, 1989JGR....9410637I, This is thermodynamically an endothermic reaction and creates a viscosity jump. Both characteristics cause this phase transition to play an important role in geodynamical models. Cold downwelling material might pond on this transition.JOURNAL, Fukao, Y., Obayashi, M., Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity, Journal of Geophysical Research: Solid Earth, 2013, 118, 11, 5920–5938, 10.1002/2013jb010466, 2013JGRB..118.5920F, 129872709, free,

Other discontinuities

There is another major phase transition predicted at 520 km for the transition of olivine (β to γ) and garnet in the pyrolite mantle.JOURNAL, Deuss, Arwen, Woodhouse, John, 2001-10-12, Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle, Science, en, 294, 5541, 354–357, 10.1126/science.1063524, 0036-8075, 11598296, 2001Sci...294..354D, 28563140, This one has only sporadically been observed in seismological data.BOOK, Egorkin, A. V., 1997-01-01, Springer Netherlands, 9789048149667, Fuchs, Karl, NATO ASI Series, 51–61, en, 10.1007/978-94-015-8979-6_4, Upper Mantle Heterogeneities from Active and Passive Seismology, Evidence for 520-Km Discontinuity, Other non-global phase transitions have been suggested at a range of depths.BOOK,weblink The Earth's Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective, Khan, Amir, Deschamps, Frédéric, 2015-04-28, Springer, 9783319156279, en,

References

{{Reflist}}{{Earthsinterior}}

- content above as imported from Wikipedia
- "Transition zone (Earth)" does not exist on GetWiki (yet)
- time: 8:39am EDT - Sat, May 18 2024
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 23 MAY 2022
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
CONNECT