SUPPORT THE WORK

GetWiki

Table of specific heat capacities

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
Table of specific heat capacities
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{Warning|1=Tables on this page might have wrong values and they should not be trusted until someone checks them out. See talk page for more info.}}{{short description|For some substances and engineering materials, includes volumetric and molar values}}The table of specific heat capacities gives the volumetric heat capacity as well as the specific heat capacity of some substances and engineering materials, and (when applicable) the molar heat capacity.Generally, the most notable constant parameter is the volumetric heat capacity (at least for solids) which is around the value of 3 megajoule per cubic meter per kelvin:Ashby, Shercliff, Cebon, Materials, Cambridge University Press, Chapter 12: Atoms in vibration: material and heatrho c_p simeq 3,text{MJ}/(text{m}^3{cdot}text{K})quad text{(solid)}Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 Jâ‹…mol−1â‹…K−1 = 3 R per mole of atoms (see the last column of this table). For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom). Dulong–Petit limit also explains why dense substance which have very heavy atoms, such like lead, rank very low in mass heat capacity.In the last column, major departures of solids at standard temperatures from the Dulong–Petit law value of 3 R, are usually due to low atomic weight plus high bond strength (as in diamond) causing some vibration modes to have too much energy to be available to store thermal energy at the measured temperature. For gases, departure from 3 R per mole of atoms is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to other atoms, as happens in many solids.{| class=“wikitable sortable” style="text-align:center”date=February 2015}} Notable minima and maxima are shown in maroon.! rowspan=2 | Substance! rowspan=2 | Phase! rowspan=2 | Isobaric mass heat capacitycPJâ‹…g−1â‹…K−1! colspan=2 | Molar heat capacity, CP,m and CV,mJâ‹…mol−1â‹…K−1! rowspan=2 | Isobaricvolumetricheat capacityCP,v Jâ‹…cm−3â‹…K−1! rowspan=2 | Isochoric molar by atom heat capacity CV,am mol-atom−1
! Isobaric! Isochoric
Earth’s atmosphere (Sea level, dry, 0 Â°C (273.15 K)) >|
Air (typical room conditionsA) gas 1.012 29.19 20.85 0.00121
Aluminium solid 0.897 24.2 2.422 2.91 R
Ammonia liquid 4.700 80.08 3.263 3.21 R
Tissue (biology)#Tissues found in AnimalsPage 183 in: MEDICAL BIOPHYSICSLAST=CORNELIUSYEAR= 2008|
Antimony solid 0.207 25.2 1.386 3.03 R
Argon gas 0.5203 20.7862 12.4717
Arsenic solid 0.328 24.6 1.878 2.96 R
Beryllium solid 1.82 16.4 3.367 1.97 R
BismuthHTTP://HYPERPHYSICS.PHY-ASTR.GSU.EDU/HBASE/TABLES/SPHTT.HTML#C1 >TITLE=TABLE OF SPECIFIC HEATS, solid 0.123 25.7 1.20 3.09 R
Cadmium solid 0.231 26.02 2.00 3.13 R
Carbon dioxide CO2YOUNG AND GELLER COLLEGE PHYSICS>EDITION=8THLAST2=GELLERYEAR= 2008|
Chromium solid 0.449 23.35 3.21 2.81 R
Copper solid 0.385 24.47 3.45 2.94 R
Diamond solid 0.5091 6.115 1.782 0.74 R
Ethanol liquid 2.44 112 1.925
Gasoline (octane) liquid 2.22 228 1.640
Glass solid 0.84 2.1
Gold solid 0.129 25.42 2.492 3.05 R
Granite solid 0.790 2.17
Graphite solid 0.710 8.53 1.534 1.03 R
Helium gas 5.1932 20.7862 12.4717
Hydrogen gas 14.30 28.82
Hydrogen sulfide H2S gas 1.015B 34.60
Iron]www.engineeringtoolbox.com/specific-heat-capacity-d_391.html solid 0.449 25.09HTTP://WEBBOOK.NIST.GOV/CGI/CBOOK.CGI?ID=C7439896&MASK=2&TYPE=JANAFS&TABLE=ON#JANAFS>PUBLISHER=NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGYPAGES=1–1951LAST1=CHASE|3.02 R
Lead solid 0.129 26.4 1.440 3.18 R
Lithium solid 3.58 24.8 1.912 2.98 R
Lithium at 181 Â°CHTTP://FUSIONNET.SEAS.UCLA.EDU/INPUT/PDF/1997%20-%20ITER%20MATERIAL%20PROPERTIES%20HANDBOOK%20-%20VOLAR01-3108%20-%20NO1%20-%20P1-4.PDF >TITLE=MATERIALS PROPERTIES HANDBOOK, MATERIAL: LITHIUM ARCHIVEURL=HTTPS://WEB.ARCHIVE.ORG/WEB/20060905164310/HTTP://FUSIONNET.SEAS.UCLA.EDU/INPUT/PDF/1997%20-%20ITER%20MATERIAL%20PROPERTIES%20HANDBOOK%20-%20VOLAR01-3108%20-%20NO1%20-%20P1-4.PDF 4.233 >|
Lithium at 181 Â°CHTTP://FUSIONNET.SEAS.UCLA.EDU/INPUT/PDF/1997%20-%20ITER%20MATERIAL%20PROPERTIES%20HANDBOOK%20-%20VOLAR01-3108%20-%20NO1%20-%20P1-4.PDF >TITLE=MATERIALS PROPERTIES HANDBOOK, MATERIAL: LITHIUM ARCHIVEURL=HTTPS://WEB.ARCHIVE.ORG/WEB/20060905164310/HTTP://FUSIONNET.SEAS.UCLA.EDU/INPUT/PDF/1997%20-%20ITER%20MATERIAL%20PROPERTIES%20HANDBOOK%20-%20VOLAR01-3108%20-%20NO1%20-%20P1-4.PDF 4.379 >| 3.65 R
Magnesium solid 1.02 24.9 1.773 2.99 R
Mercury (element) >| 3.36 R
Methane at 2 Â°C gas 2.191 35.69
MethanolHCV (MOLAR HEAT CAPACITY (CV)) DATA FOR METHANOL> WORK=DORTMUND DATA BANK SOFTWARE AND SEPARATION TECHNOLOGY |
Molten salt (142–540 Â°C)HEAT STORAGE IN MATERIALS> WORK=THE ENGINEERING TOOLBOX |
Nitrogen gas 1.040 29.12 20.8
Neon gas 1.0301 20.7862 12.4717
Oxygen gas 0.918 29.38 21.0
Paraffin waxC25H52 solid 2.5 (avg) 900 2.325
Polyethylene (rotomolding grade)R. J.>LAST= CRAWFORDISBN=978-1-59124-192-8, HTTPS://WWW.NIST.GOV/DATA/PDFFILES/JPCRD178.PDF>DOI=10.1063/1.555636YEAR=1981FIRST1=UMESHFIRST2=BERNHARDVOLUME=10PAGE=119|
Silicon dioxide (fused) >|
Silver solid 0.233 24.9 2.44 2.99 R
Sodium solid 1.230 28.23 1.193.39 R
Steel solid 0.466 3.756
Tin solid 0.227 27.112 1.6593.26 R
Titanium solid 0.523 26.060 2.6384 3.13 R
Tungsten solid 0.134 24.8 2.58 2.98 R
Uranium solid 0.116 27.7 2.216 3.33 R
Water (molecule) at 100 Â°C (steam) >2.03 >36.5 >27.5 >1.53 >|
Water (molecule) at 25 Â°C >4.1816 >75.34 >74.55 >4.138 >|
Water (molecule) at 100 Â°C >4.216 {{Dubious>date=May 2023}} 75.95 67.9 3.77
Water (molecule) at −10 Â°C (ice) >2.05 >38.09 >1.938 >|
Zinc solid 0.387 25.2 2.76 3.03 R
class=“sortbottom“! Substance! Phase! Isobaricmassheat capacitycPJâ‹…g−1â‹…K−1! Isobaricmolarheat capacityCP,mJâ‹…mol−1â‹…K−1! Isochoremolarheat capacityCV,mJâ‹…mol−1â‹…K−1! Isobaricvolumetricheat capacityCP,vJâ‹…cm−3â‹…K−1! Isochoreatom-molarheat capacityin units of RCV,amatom-mol−1
A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 Â°C, a dewpoint of 9 Â°C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%).B Calculated values
*Derived data by calculation. This is for water-rich tissues such as brain. The whole-body average figure for mammals is approximately 2.9 J⋅cm−3⋅K−1
JOURNAL, 10.1111/j.1748-1716.1995.tb09850.x, 7778459, Fat content affects heat capacity: a study in mice, 1995, Faber, P., Garby, L., Acta Physiologica Scandinavica, 153, 2, 185–7,

Mass heat capacity of building materials

{{See also|Thermal mass}}(Usually of interest to builders and solar ){| class=“wikitable sortable” style="text-align:center“|+Mass heat capacity of building materials! Substance! Phase! cPJâ‹…g−1â‹…K−1
Bitumen >| 0.920
Brick solid 0.840
Concrete solid 0.880
Glass, silica liquid 0.840
Glass, crown liquid 0.670
Glass, flint liquid 0.503
Glass, borosilicate liquid 0.753
Granite solid 0.790
Gypsum solid 1.090
Marble, mica solid 0.880
Sand solid 0.835
Soil solid 0.800
Water liquid 4.1813
Wood solid 1.7 (1.2 to 2.9)
class=“sortbottom“! Substance! Phase! cPJâ‹…g−1â‹…K−1

Human body

The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1. The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera).JOURNAL, Xu, Xiaojiang, Rioux, Timothy P., Castellani, Michael P., 2023, The specific heat of the human body is lower than previously believed: The journal Temperature toolbox, Temperature, 10, 2, 235–239, 10.1080/23328940.2022.2088034, 2332-8940, 10274559, 37332308,

See also

References

{{reflist}}

- content above as imported from Wikipedia
- "Table of specific heat capacities" does not exist on GetWiki (yet)
- time: 3:50am EDT - Wed, May 22 2024
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 21 MAY 2024
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
CONNECT