SUPPORT THE WORK

GetWiki

Riemann invariant

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
Riemann invariant
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
Riemann invariants are mathematical transformations made on a system of conservation equations to make them more easily solvable. Riemann invariants are constant along the characteristic curves of the partial differential equations where they obtain the name invariant. They were first obtained by Bernhard Riemann in his work on plane waves in gas dynamics.JOURNAL, Riemann, Bernhard, 1860, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 8,www.maths.tcd.ie/pub/HistMath/People/Riemann/Welle/Welle.pdf, 2012-08-08,

Mathematical theory

Consider the set of conservation equations:
l_ileft(A_{ij} frac{partial u_j}{partial t} +a_{ij}frac{partial u_j}{partial x} right)+l_j b_j=0
where A_{ij} and a_{ij} are the elements of the matrices mathbf{A} and mathbf{a} where l_{i} and b_{i} are elements of vectors. It will be asked if it is possible to rewrite this equation to
m_jleft(betafrac{partial u_j}{partial t} +alphafrac{partial u_j}{partial x} right)+l_j b_j=0
To do this curves will be introduced in the (x,t) plane defined by the vector field (alpha,beta). The term in the brackets will be rewritten in terms of a total derivative where x,t are parametrized as x=X(eta),t=T(eta)
frac{d u_j}{d eta}=T’frac{partial u_j}{partial t}+X’frac{partial u_j}{partial x}
comparing the last two equations we find
alpha=X’(eta), beta=T’(eta)
which can be now written in characteristic form
m_jfrac{du_j }{ d eta }+l_jb_j = 0
where we must have the conditions
l_iA_{ij}=m_jT’ l_ia_{ij}=m_jX’
where m_j can be eliminated to give the necessary condition
l_i(A_{ij}X’-a_{ij}T’)=0
so for a nontrivial solution is the determinant
|A_{ij}X’-a_{ij}T’|=0
For Riemann invariants we are concerned with the case when the matrix mathbf{A} is an identity matrix to form
frac{partial u_i}{partial t} +a_{ij}frac{partial u_j}{partial x}=0
notice this is homogeneous due to the vector mathbf{n} being zero. In characteristic form the system is
l_ifrac{du_i }{dt }=0 with frac{dx }{dt }=lambda
Where l is the left eigenvector of the matrix mathbf{A} and lambda ‘s is the characteristic speeds of the eigenvalues of the matrix mathbf{A} which satisfy
|A -lambdadelta_{ij}|=0
To simplify these characteristic equations we can make the transformations such that frac{dr}{dt}=l_ifrac{du_i}{dt}which form
mu l_idu_i =dr
An integrating factor mu can be multiplied in to help integrate this. So the system now has the characteristic form
frac{dr}{dt }=0 on frac{dx}{dt}=lambda_i
which is equivalent to the diagonal systemBOOK
, Whitham, G. B.
, 1974
, Linear and Nonlinear Waves
, John Wiley & Sons, Wiley
,
, 978-0-471-94090-6
,
r_t^k +lambda_kr_x^k=0, k=1,...,N.
The solution of this system can be given by the generalized hodograph method.BOOK
, Kamchatnov, A. M.
, 2000
, Nonlinear Periodic Waves and their Modulations
, World Scientific
,
, 978-981-02-4407-1
, JOURNAL
, Tsarev
, S. P.
, 1985
, On Poisson brackets and one-dimensional hamiltonian systems of hydrodynamic type
,ikit.institute.sfu-kras.ru/files/ikit/Tsarev-DAN-1985-eng.pdf
, Soviet Mathematics - Doklady
, 31
, 3
, 488–491
, 2379468
, 0605.35075
, 2011-08-20
, 2012-03-30
,ikit.institute.sfu-kras.ru/files/ikit/Tsarev-DAN-1985-eng.pdf" title="web.archive.org/web/20120330233314ikit.institute.sfu-kras.ru/files/ikit/Tsarev-DAN-1985-eng.pdf">web.archive.org/web/20120330233314ikit.institute.sfu-kras.ru/files/ikit/Tsarev-DAN-1985-eng.pdf
, dead
,

Example

Consider the one-dimensional Euler equations written in terms of density rho and velocity u are
rho_t+rho u_x+urho_x=0 u_t+uu_x+(c^2/rho)rho_x=0
with c being the speed of sound is introduced on account of isentropic assumption. Write this system in matrix form
left( begin{matrix} rho u end{matrix}right)_t +left( begin{matrix} u&rho frac{c^2 }{rho }&u end{matrix}right) left( begin{matrix} rho u end{matrix}right)_x=left( begin{matrix} 0 0 end{matrix}right)
where the matrix mathbf{a} from the analysis above the eigenvalues and eigenvectors need to be found. The eigenvalues are found to satisfy
lambda^2-2ulambda+u^2-c^2=0
to give
lambda=upm c
and the eigenvectors are found to be
left( begin{matrix} 1 frac{c }{rho } end{matrix}right),left( begin{matrix} 1 -frac{c }{rho } end{matrix}right)
where the Riemann invariants are
r_1=J_+=u+int frac{c}{rho}drho, r_2=J_-=u-int frac{c}{rho}drho,
(J_+ and J_- are the widely used notations in gas dynamics). For perfect gas with constant specific heats, there is the relation c^2=text{const}, gamma rho^{gamma-1}, where gamma is the specific heat ratio, to give the Riemann invariantsZelʹdovich, I. B., & Raĭzer, I. P. (1966). Physics of shock waves and high-temperature hydrodynamic phenomena (Vol. 1). Academic Press.Courant, R., & Friedrichs, K. O. 1948 Supersonic flow and shock waves. New York: Interscience.
J_+=u+frac{2}{gamma-1}c, J_-=u-frac{2}{gamma-1}c,
to give the equations
frac{partial J_+}{partial t}+(u+c)frac{partial J_+}{partial x}=0 frac{partial J_-}{partial t}+(u-c)frac{partial J_-}{partial x}=0
In other words,
begin{align}&dJ_+ = 0, , J_+=text{const}quad text{along},, C_+, :, frac{dx}{dt}=u+c, &dJ_- = 0, , J_-=text{const}quad text{along},, C_-, :, frac{dx}{dt}=u-c,end{align}where C_+ and C_- are the characteristic curves. This can be solved by the hodograph transformation. In the hodographic plane, if all the characteristics collapses into a single curve, then we obtain simple waves. If the matrix form of the system of pde’s is in the form
Afrac{partial v}{partial t}+Bfrac{partial v}{partial x}=0
Then it may be possible to multiply across by the inverse matrix A^{-1} so long as the matrix determinant of mathbf{A} is not zero.

See also

References

{{reflist}}{{Bernhard Riemann}}

- content above as imported from Wikipedia
- "Riemann invariant" does not exist on GetWiki (yet)
- time: 12:13am EDT - Wed, May 22 2024
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 21 MAY 2024
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
CONNECT