SUPPORT THE WORK

GetWiki

Debye function

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
Debye function
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{short description|Mathematical function}}In mathematics, the family of Debye functions is defined by
D_n(x) = frac{n}{x^n} int_0^x frac{t^n}{e^t - 1},dt.
The functions are named in honor of Peter Debye, who came across this function (with n = 3) in 1912 when he analytically computed the heat capacity of what is now called the Debye model.

Mathematical properties

Relation to other functions

The Debye functions are closely related to the polylogarithm.

Series expansion

They have the series expansion{{AS ref|27|998}}
D_n(x) = 1 - frac{n}{2(n+1)} x + n sum_{k=1}^infty frac{B_{2k}}{(2k+n)(2k)!} x^{2k}, quad |x| < 2pi, n ge 1,
where B_n is the n-th Bernoulli number.

Limiting values

lim_{x to 0} D_n(x) = 1.
If Gamma is the gamma function and zeta is the Riemann zeta function, then, for x gg 0,
D_n(x) = frac{n}{x^n} int_0^x frac{t^n,dt}{e^t-1} sim frac{n}{x^n}Gamma(n + 1) zeta(n + 1), qquad operatorname{Re} n > 0,BOOK, Izrail Solomonovich, Gradshteyn, Izrail Solomonovich Gradshteyn, Iosif Moiseevich, Ryzhik, Iosif Moiseevich Ryzhik, Yuri Veniaminovich, Geronimus, Yuri Veniaminovich Geronimus, Michail Yulyevich, Tseytlin, Michail Yulyevich Tseytlin, Alan, Jeffrey, Daniel, Zwillinger, Victor Hugo, Moll, Victor Hugo Moll, Scripta Technica, Inc., Table of Integrals, Series, and Products, Academic Press, Inc., 2015, October 2014, 8, English, 978-0-12-384933-5, 2014010276, Gradshteyn and Ryzhik, 3.411., 355ff,

Derivative

The derivative obeys the relation
xD^{prime}_n(x) = n(B(x)-D_n(x)),
where B(x)=x/(e^x-1) is the Bernoulli function.

Applications in solid-state physics

The Debye model

The Debye model has a density of vibrational states
g_{rm D}(omega)=frac{9omega^2}{omega_{rm D}^3} for 0leomegaleomega_{rm D}
with the Debye frequency ωD.

Internal energy and heat capacity

Inserting g into the internal energy
U=int_0^infty domega,g(omega),hbaromega,n(omega)
with the Bose–Einstein distribution
n(omega)=frac{1}{exp(hbaromega/k_{rm B}T)-1}.
one obtains
U=3 k_{rm B}T, D_3(hbaromega_{rm D}/k_{rm B}T).
The heat capacity is the derivative thereof.

Mean squared displacement

The intensity of X-ray diffraction or neutron diffraction at wavenumber q is given by the Debye-Waller factor or the Lamb-Mössbauer factor.For isotropic systems it takes the form
exp(-2W(q))=exp(-q^2langle u_x^2rangle).
In this expression, the mean squared displacement refers to just once Cartesian componentux of the vector u that describes the displacement of atoms from their equilibrium positions.Assuming harmonicity and developing into normal modes,Ashcroft & Mermin 1976, App. L,one obtains
2W(q)=frac{hbar^2 q^2}{6M k_{rm B}T}int_0^infty domegafrac{k_{rm B}T}{hbaromega}g(omega)cothfrac{hbaromega}{2k_{rm B}T}=frac{hbar^2 q^2}{6M k_{rm B}T}int_0^infty domegafrac{k_{rm B}T}{hbaromega}g(omega)left[frac{2}{exp(hbaromega/k_{rm B}T)-1}+1right].
Inserting the density of states from the Debye model, one obtains
2W(q)=frac{3}{2}frac{hbar^2 q^2}{Mhbaromega_{rm D}}left[2left(frac{k_{rm B}T}{hbaromega_{rm D}}right)D_1left(frac{hbaromega_{rm D}}{k_{rm B}T}right)+frac{1}{2}right].
From the above power series expansion of D_1 follows that the mean square displacement at high temperatures is linear in temperature
2W(q)=frac{3 k_{rm B}T q^2}{Momega_{rm D}^2}.
The absence of hbar indicates that this is a classical result. Because D_1(x) goes to zero for xtoinfty it follows that for T=0
2W(q)=frac{3}{4}frac{hbar^2 q^2}{Mhbaromega_{rm D}} (zero-point motion).

References

{{Reflist}}

Further reading

Implementations

  • JOURNAL, E. W., Ng, C. J., Devine, On the computation of Debye functions of integer orders, Math. Comp., 1970, 24, 110, 405–407, 10.1090/S0025-5718-1970-0272160-6, 0272160, free,
  • JOURNAL, I., Engeln, D., Wobig, Computation of the generalized Debye functions delta(x,y) and D(x,y), Colloid & Polymer Science, 261, 1983, 736–743, 10.1007/BF01410947, 98476561,
  • JOURNAL, Allan J., MacLeod, Algorithm 757: MISCFUN, a software package to compute uncommon special functions, ACM Trans. Math. Software, 1996, 22, 3, 288–301, 10.1145/232826.232846, 37814348, free, Fortran 77 code
  • Fortran 90 version
  • JOURNAL, Leonard C., Maximon, The dilogarithm function for complex argument, Proc. R. Soc. A, 2003, 459, 2039, 2807–2819, 10.1098/rspa.2003.1156, 2003RSPSA.459.2807M, 122271244,
  • JOURNAL, I. I., Guseinov, B. A., Mamedov, Calculation of Integer and noninteger n-Dimensional Debye Functions using Binomial Coefficients and Incomplete Gamma Functions, 2007, Int. J. Thermophys., 28, 4, 1420–1426, 10.1007/s10765-007-0256-1, 2007IJT....28.1420G, 120284032,
  • C version of the GNU Scientific Library


- content above as imported from Wikipedia
- "Debye function" does not exist on GetWiki (yet)
- time: 3:25pm EDT - Wed, May 15 2024
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 23 MAY 2022
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
CONNECT