SUPPORT THE WORK

GetWiki

quantum

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
quantum
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{Other uses|Quantum (disambiguation)}}{{pp-move-indef}}In physics, a quantum (plural: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property may be "quantized" is referred to as "the hypothesis of quantization".Wiener, N. (1966). Differential Space, Quantum Systems, and Prediction. Cambridge: The Massachusetts Institute of Technology Press This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum.For example, a photon is a single quantum of light (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. (Indeed, atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom.) Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing nature.

Etymology and discovery

The word quantum comes from the Latin quantus, meaning "how great". "Quanta", short for "quanta of electricity" (electrons), was used in a 1902 article on the photoelectric effect by Philipp Lenard, who credited Hermann von Helmholtz for using the word in the area of electricity. However, the word quantum in general was well known before 1900.E. Cobham Brewer 1810–1897. Dictionary of Phrase and Fable. 1898. It was often used by physicians, such as in the term quantum satis. Both Helmholtz and Julius von Mayer were physicians as well as physicists. Helmholtz used quantum with reference to heat in his articleE. Helmholtz, Robert Mayer's Priorität {{de icon}} on Mayer's work, and the word quantum can be found in the formulation of the first law of thermodynamics by Mayer in his letterWEB,weblink Heimatseite von Robert J. Mayer, Herrmann, Armin, Weltreich der Physik, GNT-Verlag, German, 1991, bot: unknown,weblink" title="web.archive.org/web/19980209044633weblink">weblink 1998-02-09, dated July 24, 1841. In 1901, Max Planck used quanta to mean "quanta of matter and electricity",JOURNAL, Planck, M., Max Planck, 1901, Ueber die Elementarquanta der Materie und der Elektricität, Annalen der Physik, 309, 564–566, 10.1002/andp.19013090311, 1901AnP...309..564P, 3, de,weblink gas, and heat.JOURNAL, Planck, Max, Ueber das thermodynamische Gleichgewicht von Gasgemengen, Annalen der Physik, 255, 358–378, 1883, 10.1002/andp.18832550612, 1883AnP...255..358P, 6, de,weblink In 1905, in response to Planck's work and the experimental work of Lenard (who explained his results by using the term quanta of electricity), Albert Einstein suggested that radiation existed in spatially localized packets which he called "quanta of light" ("Lichtquanta").JOURNAL, Einstein, A., Albert Einstein, 1905, Ãœber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,weblink Annalen der Physik, 17, 132–148, 10.1002/andp.19053220607, 1905AnP...322..132E, 6, de, . A partial s:A Heuristic Model of the Creation and Transformation of Light|English translation]] is available from Wikisource.The concept of quantization of radiation was discovered in 1900 by Max Planck, who had been trying to understand the emission of radiation from heated objects, known as black-body radiation. By assuming that energy can be absorbed or released only in tiny, differential, discrete packets (which he called "bundles", or "energy elements"),JOURNAL, Max Planck, Ueber das Gesetz der Energieverteilung im Normalspectrum (On the Law of Distribution of Energy in the Normal Spectrum),weblink Annalen der Physik, 309, 10.1002/andp.19013090310, 553, 1901,weblink" title="web.archive.org/web/20080418002757weblink">weblink 2008-04-18, 1901AnP...309..553P, 3, Planck accounted for certain objects changing colour when heated.Brown, T., LeMay, H., Bursten, B. (2008). Chemistry: The Central Science Upper Saddle River, NJ: Pearson Education {{ISBN|0-13-600617-5}} On December 14, 1900, Planck reported his findings to the German Physical Society, and introduced the idea of quantization for the first time as a part of his research on black-body radiation.JOURNAL, Klein, Martin J., Max Planck and the beginnings of the quantum theory, Archive for History of Exact Sciences, 1, 459–479, 1961, 10.1007/BF00327765, 5, As a result of his experiments, Planck deduced the numerical value of h, known as the Planck constant, and reported more precise values for the unit of electrical charge and the Avogadro–Loschmidt number, the number of real molecules in a mole, to the German Physical Society. After his theory was validated, Planck was awarded the Nobel Prize in Physics for his discovery in 1918.

Beyond electromagnetic radiation

While quantization was first discovered in electromagnetic radiation, it describes a fundamental aspect of energy not just restricted to photons.Melville, K. (2005, February 11). Real-World Quantum Effects DemonstratedIn the attempt to bring theory into agreement with experiment, Max Planck postulated that electromagnetic energy is absorbed or emitted in discrete packets, or quanta.Modern Applied Physics-Tippens third edition; McGraw-Hill.

See also

{{div col|colwidth=15em}} {{div col end}}

References

{{Reflist}}

Further reading

  • B. Hoffmann, The Strange Story of the Quantum, Pelican 1963.
  • Lucretius, On the Nature of the Universe, transl. from the Latin by R.E. Latham, Penguin Books Ltd., Harmondsworth 1951.
  • J. Mehra and H. Rechenberg, The Historical Development of Quantum Theory, Vol.1, Part 1, Springer-Verlag New York Inc., New York 1982.
  • M. Planck, A Survey of Physical Theory, transl. by R. Jones and D.H. Williams, Methuen & Co., Ltd., London 1925 (Dover editions 1960 and 1993) including the Nobel lecture.
  • Rodney, Brooks (2011) Fields of Color: The theory that escaped Einstein. Allegra Print & Imaging.
{{Authority control}}

- content above as imported from Wikipedia
- "quantum" does not exist on GetWiki (yet)
- time: 10:15am EDT - Sun, Sep 22 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
CONNECT