aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
essay  →
feed  →
help  →
system  →
wiki  →
critical  →
discussion  →
forked  →
imported  →
original  →
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{short description|Chemical element with atomic number 10}}{{About|the chemical element}}{{pp-vandalism|small=yes}}{{pp-move-indef}}

Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas.Group 18 refers to the modern numbering of the periodic table. Older numberings described the rare gases as Group 0 or Group VIIIA (sometimes shortened to 8). See also Group (periodic table). Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypton and xenon) in 1898 as one of the three residual rare inert elements remaining in dry air, after nitrogen, oxygen, argon and carbon dioxide were removed. Neon was the second of these three rare gases to be discovered and was immediately recognized as a new element from its bright red emission spectrum. The name neon is derived from the Greek word, , neuter singular form of (neos), meaning new. Neon is chemically inert, and no uncharged neon compounds are known. The compounds of neon currently known include ionic molecules, molecules held together by van der Waals forces and clathrates.During cosmic nucleogenesis of the elements, large amounts of neon are built up from the alpha-capture fusion process in stars. Although neon is a very common element in the universe and solar system (it is fifth in cosmic abundance after hydrogen, helium, oxygen and carbon), it is rare on Earth. It composes about 18.2 ppm of air by volume (this is about the same as the molecular or mole fraction) and a smaller fraction in Earth's crust. The reason for neon's relative scarcity on Earth and the inner (terrestrial) planets is that neon is highly volatile and forms no compounds to fix it to solids. As a result, it escaped from the planetesimals under the warmth of the newly ignited Sun in the early Solar System. Even the outer atmosphere of Jupiter is somewhat depleted of neon, although for a different reason.{{citation | title=Sequestration of Noble Gases in Giant Planet Interiors | last1=Wilson | first1=Hugh F. | last2=Militzer | first2=Burkhard | journal=Physical Review Letters | volume=104 | issue=12 | id=121101 | date=March 2010 | doi=10.1103/PhysRevLett.104.121101 | bibcode=2010PhRvL.104l1101W | arxiv=1003.5940 | postscript=. }}Neon gives a distinct reddish-orange glow when used in low-voltage neon glow lamps, high-voltage discharge tubes and neon advertising signs.BOOK, Project STAR: The Universe in Your Hands, Coyle, Harold P., Kendall Hunt, 2001, 978-0-7872-6763-6,weblink 464, BOOK, Phosphors for lamps, Phosphor Handbook, Shionoya, Shigeo, Yen, William M., Kohmoto, Kohtaro, CRC Press, 1999, 978-0-8493-7560-6,weblink 940, The red emission line from neon also causes the well known red light of helium–neon lasers. Neon is used in some plasma tube and refrigerant applications but has few other commercial uses. It is commercially extracted by the fractional distillation of liquid air. Since air is the only source, it is considerably more expensive than helium.


File:NeTube.jpg|thumb|left|Neon gas-discharge lampgas-discharge lampNeon was discovered in 1898 by the British chemists Sir William Ramsay (1852–1916) and Morris W. Travers (1872–1961) in London.JOURNAL, On the Companions of Argon, William Ramsay, Ramsay, William, Travers, Morris W., Proceedings of the Royal Society of London, 63, 1, 437–440, 1898, 10.1098/rspl.1898.0057, Neon was discovered when Ramsay chilled a sample of air until it became a liquid, then warmed the liquid and captured the gases as they boiled off. The gases nitrogen, oxygen, and argon had been identified, but the remaining gases were isolated in roughly their order of abundance, in a six-week period beginning at the end of May 1898. First to be identified was krypton. The next, after krypton had been removed, was a gas which gave a brilliant red light under spectroscopic discharge. This gas, identified in June, was named "neon", the Greek analogue of the Latin novum ('new')WEB,weblink Neon: History, 2007-02-27, Softciências, live,weblink" title="">weblink 2007-03-14, suggested by Ramsay's son. The characteristic brilliant red-orange color emitted by gaseous neon when excited electrically was noted immediately. Travers later wrote: "the blaze of crimson light from the tube told its own story and was a sight to dwell upon and never forget."BOOK,weblink Discovery of the Elements: Third Edition (reprint), Weeks, Mary Elvira, 2003, Kessinger Publishing, 978-0-7661-3872-8, 287, Mary Elvira Weeks,weblink" title="">weblink 2015-03-22, live, A second gas was also reported along with neon, having approximately the same density as argon but with a different spectrum – Ramsay and Travers named it metargon.WEB
, Nobel Lecture – The Rare Gases of the Atmosphere
, Ramsay
, Sir William
, December 12, 1904
, Nobel Media AB
, 15 November 2015
, live
,weblink" title="">weblink
, 13 November 2015
, JOURNAL, Ramsay, William, Travers, Morris W., On the Companions of Argon, Proceedings of the Royal Society of London, 63, 1, 1898, 437–440, 0370-1662, 10.1098/rspl.1898.0057, However, subsequent spectroscopic analysis revealed it to be argon contaminated with carbon monoxide. Finally, the same team discovered xenon by the same process, in September 1898.Neon's scarcity precluded its prompt application for lighting along the lines of Moore tubes, which used nitrogen and which were commercialized in the early 1900s. After 1902, Georges Claude's company Air Liquide produced industrial quantities of neon as a byproduct of his air-liquefaction business. In December 1910 Claude demonstrated modern neon lighting based on a sealed tube of neon. Claude tried briefly to sell neon tubes for indoor domestic lighting, due to their intensity, but the market failed because homeowners objected to the color. In 1912, Claude's associate began selling neon discharge tubes as eye-catching advertising signs and was instantly more successful. Neon tubes were introduced to the U.S. in 1923 with two large neon signs bought by a Los Angeles Packard car dealership. The glow and arresting red color made neon advertising completely different from the competition.NEWS
, Neon: A Brief History
, Mangum
, Aja
, 2008-05-20
, December 8, 2007
, New York Magazine
, live
,weblink" title="">weblink
, April 15, 2008
, The intense color and vibrancy of neon equated with American society at the time, suggesting a "century of progress" and transforming cities into sensational new environments filled with radiating advertisements and "electro-graphic architecture".JOURNAL, Golec, Michael J., 2010, Logo/Local Intensities: Lacan, the Discourse of the Other, and the Solicitation to "Enjoy", Design and Culture, 2, 2, NEWS, Electro-Graphic Architecture, Wolfe, Tom, October 1968, Architecture Canada, Neon played a role in the basic understanding of the nature of atoms in 1913, when J. J. Thomson, as part of his exploration into the composition of canal rays, channeled streams of neon ions through a magnetic and an electric field and measured the deflection of the streams with a photographic plate. Thomson observed two separate patches of light on the photographic plate (see image), which suggested two different parabolas of deflection. Thomson eventually concluded that some of the atoms in the neon gas were of higher mass than the rest. Though not understood at the time by Thomson, this was the first discovery of isotopes of stable atoms. Thomson's device was a crude version of the instrument we now term a mass spectrometer.


File:Discovery of neon isotopes.JPG|thumb|left|The first evidence for isotopes of a stable element was provided in 1913 by experiments on neon plasma. In the bottom right corner of J. J. ThomsonJ. J. ThomsonNeon is the second lightest inert gas. Neon has three stable isotopes: 20Ne (90.48%), 21Ne (0.27%) and 22Ne (9.25%). 21Ne and 22Ne are partly primordial and partly nucleogenic (i.e. made by nuclear reactions of other nuclides with neutrons or other particles in the environment) and their variations in natural abundance are well understood. In contrast, 20Ne (the chief primordial isotope made in stellar nucleosynthesis) is not known to be nucleogenic or radiogenic. The causes of the variation of 20Ne in the Earth have thus been hotly debated.BOOK, 978-0-521-82316-6, Neon, 303,weblink Radiogenic isotope geology, Dickin, Alan P, 2005, The principal nuclear reactions generating nucleogenic neon isotopes start from 24Mg and 25Mg, which produce 21Ne and 22Ne respectively, after neutron capture and immediate emission of an alpha particle. The neutrons that produce the reactions are mostly produced by secondary spallation reactions from alpha particles, in turn derived from uranium-series decay chains. The net result yields a trend towards lower 20Ne/22Ne and higher 21Ne/22Ne ratios observed in uranium-rich rocks such as granites.Resources on Isotopes. Periodic Table—Neon {{webarchive|url= |date=2006-09-23 }}. explanation of the nucleogenic sources of Ne-21 and Ne-22. 21Ne may also be produced in a nucleogenic reaction, when 20Ne absorbs a neutron from various natural terrestrial neutron sources.In addition, isotopic analysis of exposed terrestrial rocks has demonstrated the cosmogenic (cosmic ray) production of 21Ne. This isotope is generated by spallation reactions on magnesium, sodium, silicon, and aluminium. By analyzing all three isotopes, the cosmogenic component can be resolved from magmatic neon and nucleogenic neon. This suggests that neon will be a useful tool in determining cosmic exposure ages of surface rocks and meteorites.WEB,weblink Neon: Isotopes, 2007-02-27, Softciências, live,weblink" title="">weblink 2012-11-15, Similar to xenon, neon content observed in samples of volcanic gases is enriched in 20Ne and nucleogenic 21Ne relative to 22Ne content. The neon isotopic content of these mantle-derived samples represents a non-atmospheric source of neon. The 20Ne-enriched components are attributed to exotic primordial rare-gas components in the Earth, possibly representing solar neon. Elevated 20Ne abundances are found in diamonds, further suggesting a solar-neon reservoir in the Earth.WEB,weblink Helium, Neon & Argon, 2006-07-02, Anderson, Don L.,, live,weblink" title="">weblink 2006-05-28,


Neon is the second-lightest noble gas, after helium. It glows reddish-orange in a vacuum discharge tube. Also, neon has the narrowest liquid range of any element: from 24.55 K to 27.05 K (−248.45 Â°C to −245.95 Â°C, or −415.21 Â°F to −410.71 Â°F). It has over 40 times the refrigerating capacity (per unit volume) of liquid helium and three times that of liquid hydrogen. In most applications it is a less expensive refrigerant than helium.WEB,weblink NASSMC: News Bulletin, 2007-03-05, December 30, 2005, dead,weblink" title="">weblink February 13, 2007, BOOK,weblink 195, Fundamentals of Cryogenic Engineering, 9788120330573, Mukhopadhyay, Mamata, 2012, live,weblink 2017-11-16, (File:Neon emission.png|thumb|left|Spectrum of neon with ultraviolet (at left) and infrared (at right) lines shown in white)Neon plasma has the most intense light discharge at normal voltages and currents of all the noble gases. The average color of this light to the human eye is red-orange due to many lines in this range; it also contains a strong green line, which is hidden, unless the visual components are dispersed by a spectroscope.WEB,weblink Plasma, 2007-03-05, live,weblink" title="">weblink 2007-03-07, Two quite different kinds of neon lighting are in common use. Neon glow lamps are generally tiny, with most operating between 100 and 250 volts.BOOK, Baumann, Edward, Applications of Neon Lamps and Gas Discharge Tubes, Carlton Press, 1966, They have been widely used as power-on indicators and in circuit-testing equipment, but light-emitting diodes (LEDs) now dominate in those applications. These simple neon devices were the forerunners of plasma displays and plasma television screens.BOOK, Display interfaces: fundamentals and standards, Myers, Robert L., John Wiley and Sons, 2002, 69–71,weblink 978-0-471-49946-6, Plasma displays are closely related to the simple neon lamp., live,weblink 2016-06-29, JOURNAL, Weber, Larry F., Larry F. Weber, History of the plasma display panel, IEEE Transactions on Plasma Science, 34, 2, April 2006, 268–278, 10.1109/TPS.2006.872440, 2006ITPS...34..268W, Paid access. Neon signs typically operate at much higher voltages (2–15 kilovolts), and the luminous tubes are commonly meters long.WEB, ANSI Luminous Tube Footage Chart,weblink American National Standards Institute (ANSI), 2010-12-10, live,weblink" title="">weblink 2011-02-06, Reproduction of a chart in the catalog of a lighting company in Toronto; the original ANSI specification is not given. The glass tubing is often formed into shapes and letters for signage, as well as architectural and artistic applications.File:FLORIST (neon sign).jpg|thumb|Neon sign in a Hamden, ConnecticutHamden, Connecticut


Stable isotopes of neon are produced in stars. Neon's most abundant isotope 20Ne (90.48%) is created by the nuclear fusion of carbon and carbon in the carbon-burning process of stellar nucleosynthesis. This requires temperatures above 500 megakelvins, which occur in the cores of stars of more than 8 solar masses.BOOK,weblink Handbook of Isotopes in the Cosmos: Hydrogen to Gallium, Clayton, Donald, Cambridge University Press, 2003, 978-0521823814, 106-107, BOOK, Ryan, Sean G., Norton, Andrew J., Stellar Evolution and Nucleosynthesis, 2010, 135, 978-0-521-13320-3, Cambridge University Press,weblink Neon is abundant on a universal scale; it is the fifth most abundant chemical element in the universe by mass, after hydrogen, helium, oxygen, and carbon (see chemical element).JOURNAL, 2009ARA&A..47..481A, 10.1146/annurev.astro.46.060407.145222, The Chemical Composition of the Sun, Annual Review of Astronomy and Astrophysics, 47, 481, 2009, Asplund, Martin, Grevesse, Nicolas, Sauval, A. Jacques, Scott, Pat, 0909.0948, Its relative rarity on Earth, like that of helium, is due to its relative lightness, high vapor pressure at very low temperatures, and chemical inertness, all properties which tend to keep it from being trapped in the condensing gas and dust clouds that formed the smaller and warmer solid planets like Earth.Neon is monatomic, making it lighter than the molecules of diatomic nitrogen and oxygen which form the bulk of Earth's atmosphere; a balloon filled with neon will rise in air, albeit more slowly than a helium balloon.BOOK, Chemistry for Higher Tier, Gallagher, R., Ingram, P., University Press, 978-0-19-914817-2,weblink 282, 2001-07-19, Neon's abundance in the universe is about 1 part in 750; in the Sun and presumably in the proto-solar system nebula, about 1 part in 600. The Galileo spacecraft atmospheric entry probe found that even in the upper atmosphere of Jupiter, the abundance of neon is reduced (depleted) by about a factor of 10, to a level of 1 part in 6,000 by mass. This may indicate that even the ice-planetesimals which brought neon into Jupiter from the outer solar system, formed in a region which was too warm to retain the neon atmospheric component (abundances of heavier inert gases on Jupiter are several times that found in the Sun).WEB,weblink Galileo Probe Science Result, 2007-02-27, Morse, David, January 26, 1996, Galileo Project, live,weblink" title="">weblink February 24, 2007, Neon comprises 1 part in 55,000 in the Earth's atmosphere, or 18.2 ppm by volume (this is about the same as the molecule or mole fraction), or 1 part in 79,000 of air by mass. It comprises a smaller fraction in the crust. It is industrially produced by cryogenic fractional distillation of liquefied air.On 17 August 2015, based on studies with the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft, NASA scientists reported the detection of neon in the exosphere of the moon.WEB, Steigerwald, William, NASA's LADEE Spacecraft Finds Neon in Lunar Atmosphere,weblink 17 August 2015, NASA, 18 August 2015, live,weblink" title="">weblink 19 August 2015,


File:Ne-water clathrate.png|thumb|Crystal structure of Ne clathrate hydrateclathrate hydrateNeon is the first p-block noble gas, and the first element with a true octet of electrons. It is inert: as is the case with its lighter analogue, helium, no strongly bound neutral molecules containing neon have been identified. The ions [NeAr]+, [NeH]+, and [HeNe]+ have been observed from optical and mass spectrometric studies. Solid neon clathrate hydrate was produced from water ice and neon gas at pressures 0.35–0.48 GPa and temperatures about −30 Â°C.JOURNAL, 10.1073/pnas.1410690111, 25002464, 4115495, 2014, Yu, X., Crystal structure and encapsulation dynamics of ice II-structured neon hydrate, Proceedings of the National Academy of Sciences of the United States of America, 111, 29, 10456–61, Zhu, J., Du, S., Xu, H., Vogel, S. C., Han, J., Germann, T. C., Zhang, J., Jin, C., Francisco, J. S., Zhao, Y., 2014PNAS..11110456Y, Ne atoms are not bonded to water and can freely move through this material. They can be extracted by placing the clathrate into a vacuum chamber for several days, yielding ice XVI, the least dense crystalline form of water.JOURNAL, 10.1038/nature14014, 25503235, Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate, Nature, 516, 7530, 231, 2014, Falenty, Andrzej, Hansen, Thomas C., Kuhs, Werner F., 2014Natur.516..231F, The familiar Pauling electronegativity scale relies upon chemical bond energies, but such values have obviously not been measured for inert helium and neon. The Allen electronegativity scale, which relies only upon (measurable) atomic energies, identifies neon as the most electronegative element, closely followed by fluorine and helium.


Neon is often used in signs and produces an unmistakable bright reddish-orange light. Although tube lights with other colors are often called "neon", they use different noble gases or varied colors of fluorescent lighting.Neon is used in vacuum tubes, high-voltage indicators, lightning arresters, wavemeter tubes, television tubes, and helium–neon lasers. Liquefied neon is commercially used as a cryogenic refrigerant in applications not requiring the lower temperature range attainable with more extreme liquid-helium refrigeration.Neon, as liquid or gas, is relatively expensive â€“ for small quantities, the price of liquid neon can be more than 55 times that of liquid helium. Driving neon's expense is the rarity of neon, which, unlike helium, can only be obtained from air.The triple point temperature of neon (24.5561 K) is a defining fixed point in the International Temperature Scale of 1990.WEB,weblink The Internet resource for the International Temperature Scale of 1990, 2009-07-07, dead,weblink" title="">weblink 2009-08-15,

See also

{{Subject bar|book1=Neon|book2=Period 2 elements|book3=Noble gases|book4=Chemical elements (sorted alphabetically)|book5=Chemical elements (sorted by number)|portal=Chemistry|commons=y|wikt=y|wikt-search=neon|v=y|v-search=Neon atom|b=y|b-search=Wikijunior:The Elements/Neon}}



External links

{{Compact periodic table}}{{good article}}{{Authority control}}

- content above as imported from Wikipedia
- "neon" does not exist on GetWiki (yet)
- time: 7:21am EDT - Mon, Sep 23 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
Eastern Philosophy
History of Philosophy
M.R.M. Parrott