SUPPORT THE WORK

GetWiki

molecule

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
molecule
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{short description|Electrically neutral entity consisting of more than one atom (n > 1); rigorously, a molecule, in which n > 1 must correspond to a depression on the potential energy surface that is deep enough to confine at least one vibrational state}}{{Redirect2|Molecules|Molecular||Molecules (journal)|and|Molecular (game)}}{{pp-move-indef}}{{Use dmy dates|date=February 2016}}File:PTCDA AFM.jpg|thumb|Atomic force microscopy (AFM) image of a PTCDA molecule, in which the five six-carbon rings are visible.JOURNAL, 10.1038/ncomms8766, 26178193, 4518281, Chemical structure imaging of a single molecule by atomic force microscopy at room temperature, Nature Communications, 6, 7766, 2015, Iwata, Kota, Yamazaki, Shiro, Mutombo, Pingo, Hapala, Prokop, Ondráček, Martin, Jelínek, Pavel, Sugimoto, Yoshiaki, 2015NatCo...6E7766I, ]]File:Pentacene on Ni(111) STM.jpg|thumb|A scanning tunneling microscopy image of (pentacene]] molecules, which consist of linear chains of five carbon rings.JOURNAL, 10.1039/C4NR07057G, 25619890, Pentacene on Ni(111): Room-temperature molecular packing and temperature-activated conversion to graphene, Nanoscale, 7, 7, 3263–9, 2015, Dinca, L.E., De Marchi, F., MacLeod, J.M., Lipton-Duffin, J., Gatti, R., Ma, D., Perepichka, D.F., Rosei, F., 2015Nanos...7.3263D, )(File:TOAT AFM.png|thumb|AFM image of 1,5,9-trioxo-13-azatriangulene and its chemical structure.JOURNAL, 10.1038/ncomms11560, 27230940, 4894979, Mapping the electrostatic force field of single molecules from high-resolution scanning probe images, Nature Communications, 7, 11560, 2016, Hapala, Prokop, Švec, Martin, Stetsovych, Oleksandr, Van Der Heijden, Nadine J., Ondráček, Martin, Van Der Lit, Joost, Mutombo, Pingo, Swart, Ingmar, Jelínek, Pavel, 2016NatCo...711560H, )A molecule is an electrically neutral group of two or more atoms held together by chemical bonds.{{GoldBookRef| title=Molecule|file=M04002|accessdate=23 February 2016}}BOOK, Ebbin, Darrell D., General Chemistry, 3rd, 1990, Houghton Mifflin Co., Boston, 978-0-395-43302-7, BOOK, Brown, T.L., Kenneth C. Kemp, Theodore L. Brown, Harold Eugene LeMay, Bruce Edward Bursten, Chemistry – the Central Science, 9th, 2003, Prentice Hall, New Jersey, 978-0-13-066997-1, BOOK, Chang, Raymond, Chemistry, 6th, 1998, McGraw Hill, New York, 978-0-07-115221-1, BOOK, Zumdahl, Steven S., Chemistry, 4th, 1997, Houghton Mifflin, Boston, 978-0-669-41794-4, Molecules are distinguished from ions by their lack of electrical charge. However, in quantum physics, organic chemistry, and biochemistry, the term molecule is often used less strictly, also being applied to polyatomic ions.In the kinetic theory of gases, the term molecule is often used for any gaseous particle regardless of its composition. According to this definition, noble gas atoms are considered molecules as they are monatomic molecules.BOOK, Chandra, Sulekh, Comprehensive Inorganic Chemistry, 2005, New Age Publishers, 978-81-224-1512-4, A molecule may be homonuclear, that is, it consists of atoms of one chemical element, as with oxygen (O2); or it may be heteronuclear, a chemical compound composed of more than one element, as with water (H2O). Atoms and complexes connected by non-covalent interactions, such as hydrogen bonds or ionic bonds, are typically not considered single molecules.ENCYCLOPEDIA, Molecule, Encyclopædia Britannica, 22 January 2016,weblink 23 February 2016, Molecules as components of matter are common in organic substances (and therefore biochemistry). They also make up most of the oceans and atmosphere. However, the majority of familiar solid substances on Earth, including most of the minerals that make up the crust, mantle, and core of the Earth, contain many chemical bonds, but are not made of identifiable molecules. Also, no typical molecule can be defined for ionic crystals (salts) and covalent crystals (network solids), although these are often composed of repeating unit cells that extend either in a plane (such as in graphene) or three-dimensionally (such as in diamond, quartz, or sodium chloride). The theme of repeated unit-cellular-structure also holds for most condensed phases with metallic bonding, which means that solid metals are also not made of molecules. In glasses (solids that exist in a vitreous disordered state), atoms may also be held together by chemical bonds with no presence of any definable molecule, nor any of the regularity of repeating units that characterizes crystals.

Molecular science

The science of molecules is called molecular chemistry or molecular physics, depending on whether the focus is on chemistry or physics. Molecular chemistry deals with the laws governing the interaction between molecules that results in the formation and breakage of chemical bonds, while molecular physics deals with the laws governing their structure and properties. In practice, however, this distinction is vague. In molecular sciences, a molecule consists of a stable system (bound state) composed of two or more atoms. Polyatomic ions may sometimes be usefully thought of as electrically charged molecules. The term unstable molecule is used for very reactive species, i.e., short-lived assemblies (resonances) of electrons and nuclei, such as radicals, molecular ions, Rydberg molecules, transition states, van der Waals complexes, or systems of colliding atoms as in Bose–Einstein condensate.

History and etymology

According to Merriam-Webster and the Online Etymology Dictionary, the word "molecule" derives from the Latin "moles" or small unit of mass.
  • Molecule (1794) â€“ "extremely minute particle", from French ' (1678), from New Latin ', diminutive of Latin "mass, barrier". A vague meaning at first; the vogue for the word (used until the late 18th century only in Latin form) can be traced to the philosophy of Descartes.{{OEtymD|molecule|accessdate=2016-02-22}}DICTIONARY, molecule,weblink Merriam-Webster, 22 February 2016,
The definition of the molecule has evolved as knowledge of the structure of molecules has increased. Earlier definitions were less precise, defining molecules as the smallest particles of pure chemical substances that still retain their composition and chemical properties.Molecule Definition (Frostburg State University) This definition often breaks down since many substances in ordinary experience, such as rocks, salts, and metals, are composed of large crystalline networks of chemically bonded atoms or ions, but are not made of discrete molecules.{{clear}}

Bonding

Molecules are held together by either covalent bonding or ionic bonding. Several types of non-metal elements exist only as molecules in the environment. For example, hydrogen only exists as hydrogen molecule. A molecule of a compound is made out of two or more elements.BOOK, The Hutchinson unabridged encyclopedia with atlas and weather guide, Oxford, England, 696918830,

Covalent

File:Covalent bond hydrogen.svg|thumb|right|A covalent bond forming H2 (right) where two hydrogen atomhydrogen atomCovalent bond is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are termed shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is termed covalent bonding.BOOK, Brad Williamson; Robin J. Heyden, Campbell, Neil A., Biology: Exploring Life,weblink 2012-02-05, 2006, Pearson Prentice Hall, Boston, 978-0-13-250882-7, {{clear}}

Ionic

File:NaF.gif|thumb|left|Sodium and fluorine undergoing a redox reaction to form sodium fluoride. Sodium loses its outer electron to give it a stable electron configuration, and this electron enters the fluorine atom exothermicexothermic
Ionic bonding is a type of chemical bond that involves the electrostatic attraction between oppositely charged ions, and is the primary interaction occurring in ionic compounds. The ions are atoms that have lost one or more electrons (termed cations) and atoms that have gained one or more electrons (termed anions).BOOK,weblink Elements of Metallurgy and Engineering Alloys, Campbell, Flake C., 2008, ASM International, 978-1-61503-058-3, en, This transfer of electrons is termed electrovalence in contrast to covalence. In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be of a more complicated nature, e.g. molecular ions like NH4+ or SO42−. Basically, an ionic bond is the transfer of electrons from a metal to a non-metal for both atoms to obtain a full valence shell.{{clear}}

Molecular size

Most molecules are far too small to be seen with the naked eye, although molecules of many polymers can reach macroscopic sizes, including biopolymers such as DNA. Molecules commonly used as building blocks for organic synthesis have a dimension of a few angstroms (Å) to several dozen Å, or around one billionth of a meter. Single molecules cannot usually be observed by light (as noted above), but small molecules and even the outlines of individual atoms may be traced in some circumstances by use of an atomic force microscope. Some of the largest molecules are macromolecules or supermolecules.The smallest molecule is the diatomic hydrogen (H2), with a bond length of 0.74 Å.BOOK, Roger L. DeKock, Harry B. Gray, Harry B. Gray, Chemical structure and bonding,weblink 1989, University Science Books, 978-0-935702-61-3, 199, Effective molecular radius is the size a molecule displays in solution."MEMBERWIDE">AUTHOR2=DEEN WM AUTHOR4=BRENNER BM, Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions, Kidney Int., 8, 4, 212–218, 1975, 1202253, 10.1038/ki.1975.104, CHANG RL >AUTHOR2=UEKI IF AUTHOR4=DEEN WM AUTHOR6=BRENNER BM, Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran, Biophys. J., 15, 9, 887–906, 1975, 1182263, 10.1016/S0006-3495(75)85863-2, 1334749, 1975BpJ....15..887C, The table of permselectivity for different substances contains examples.

Molecular formulas

Chemical formula types

The chemical formula for a molecule uses one line of chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, and plus (+) and minus (−) signs. These are limited to one typographic line of symbols, which may include subscripts and superscripts.A compound's empirical formula is a very simple type of chemical formula.BOOK,weblink The Practice of Chemistry, Wink, Donald J., Fetzer-Gislason, Sharon, McNicholas, Sheila, 2003, Macmillan, 978-0-7167-4871-7, en, It is the simplest integer ratio of the chemical elements that constitute it.WEB,weblink ChemTeam: Empirical Formula, www.chemteam.info, 2017-04-16, For example, water is always composed of a 2:1 ratio of hydrogen to oxygen atoms, and ethyl alcohol or ethanol is always composed of carbon, hydrogen, and oxygen in a 2:6:1 ratio. However, this does not determine the kind of molecule uniquely â€“ dimethyl ether has the same ratios as ethanol, for instance. Molecules with the same atoms in different arrangements are called isomers. Also carbohydrates, for example, have the same ratio (carbon:hydrogen:oxygen= 1:2:1) (and thus the same empirical formula) but different total numbers of atoms in the molecule.The molecular formula reflects the exact number of atoms that compose the molecule and so characterizes different molecules. However different isomers can have the same atomic composition while being different molecules.The empirical formula is often the same as the molecular formula but not always. For example, the molecule acetylene has molecular formula C2H2, but the simplest integer ratio of elements is CH.The molecular mass can be calculated from the chemical formula and is expressed in conventional atomic mass units equal to 1/12 of the mass of a neutral carbon-12 (12C isotope) atom. For network solids, the term formula unit is used in stoichiometric calculations.{{clear}}

Structural formula

File:Atisane3.png|thumb|right|upright=1.8|3D (left and center) and 2D (right) representations of the terpenoidterpenoidFor molecules with a complicated 3-dimensional structure, especially involving atoms bonded to four different substituents, a simple molecular formula or even semi-structural chemical formula may not be enough to completely specify the molecule. In this case, a graphical type of formula called a structural formula may be needed. Structural formulas may in turn be represented with a one-dimensional chemical name, but such chemical nomenclature requires many words and terms which are not part of chemical formulas.{{clear}}

Molecular geometry

File:Cyanostar STM.png|thumb|left|upright|Structure and STM image of a "cyanostar" dendrimerdendrimerMolecules have fixed equilibrium geometries—bond lengths and angles— about which they continuously oscillate through vibrational and rotational motions. A pure substance is composed of molecules with the same average geometrical structure. The chemical formula and the structure of a molecule are the two important factors that determine its properties, particularly its reactivity. Isomers share a chemical formula but normally have very different properties because of their different structures. Stereoisomers, a particular type of isomer, may have very similar physico-chemical properties and at the same time different biochemical activities.

Molecular spectroscopy

File:Dehydrogenation of H2TPP by STM.jpg|thumb|upright=1.3|Hydrogen can be removed from individual H2TPP molecules by applying excess voltage to the tip of a scanning tunneling microscope (STM, a); this removal alters the current-voltage (I-V) curves of TPP molecules, measured using the same STM tip, from diode like (red curve in b) to resistor like (green curve). Image (c) shows a row of TPP, H2TPP and TPP molecules. While scanning image (d), excess voltage was applied to H2TPP at the black dot, which instantly removed hydrogen, as shown in the bottom part of (d) and in the rescan image (e). Such manipulations can be used in single-molecule electronicssingle-molecule electronicsMolecular spectroscopy deals with the response (spectrum) of molecules interacting with probing signals of known energy (or frequency, according to Planck's formula). Molecules have quantized energy levels that can be analyzed by detecting the molecule's energy exchange through absorbance or emission.{{GoldBookRef|title=Spectroscopy|file=S05848|accessdate=23 February 2016}}Spectroscopy does not generally refer to diffraction studies where particles such as neutrons, electrons, or high energy X-rays interact with a regular arrangement of molecules (as in a crystal).Microwave spectroscopy commonly measures changes in the rotation of molecules, and can be used to identify molecules in outer space. Infrared spectroscopy measures the vibration of molecules, including stretching, bending or twisting motions. It is commonly used to identify the kinds of bonds or functional groups in molecules. Changes in the arrangements of electrons yield absorption or emission lines in ultraviolet, visible or near infrared light, and result in colour. Nuclear resonance spectroscopy measures the environment of particular nuclei in the molecule, and can be used to characterise the numbers of atoms in different positions in a molecule.

Theoretical aspects

The study of molecules by molecular physics and theoretical chemistry is largely based on quantum mechanics and is essential for the understanding of the chemical bond. The simplest of molecules is the hydrogen molecule-ion, H2+, and the simplest of all the chemical bonds is the one-electron bond. H2+ is composed of two positively charged protons and one negatively charged electron, which means that the Schrödinger equation for the system can be solved more easily due to the lack of electron–electron repulsion. With the development of fast digital computers, approximate solutions for more complicated molecules became possible and are one of the main aspects of computational chemistry.When trying to define rigorously whether an arrangement of atoms is sufficiently stable to be considered a molecule, IUPAC suggests that it "must correspond to a depression on the potential energy surface that is deep enough to confine at least one vibrational state". This definition does not depend on the nature of the interaction between the atoms, but only on the strength of the interaction. In fact, it includes weakly bound species that would not traditionally be considered molecules, such as the helium dimer, He2, which has one vibrational bound stateJOURNAL, Anderson JB, Comment on "An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential" [J. Chem. Phys. 115, 4546 (2001)], J Chem Phys, 120, 20, 9886–7, May 2004, 15268005, 10.1063/1.1704638, 2004JChPh.120.9886A, and is so loosely bound that it is only likely to be observed at very low temperatures.Whether or not an arrangement of atoms is sufficiently stable to be considered a molecule is inherently an operational definition. Philosophically, therefore, a molecule is not a fundamental entity (in contrast, for instance, to an elementary particle); rather, the concept of a molecule is the chemist's way of making a useful statement about the strengths of atomic-scale interactions in the world that we observe.{{clear}}

See also

{{div col|colwidth=23em}} {{div col end}}

References

{{Reflist}}

External links

{{wikimedia|collapsible=true|c=Category:Molecules|voy=no|wikt=molecule|v=no|n=no|q=Molecule|s=no|b=no|species=no|d=Q11369}} {{Composition}}{{Molecules detected in outer space}}{{Particles}}{{Branches of chemistry}}{{authority control}}

- content above as imported from Wikipedia
- "molecule" does not exist on GetWiki (yet)
- time: 12:14am EDT - Tue, Jul 16 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
CONNECT