SUPPORT THE WORK

# GetWiki

### local class field theory

ARTICLE SUBJECTS
news  →
unix  →
wiki  →
ARTICLE TYPES
feed  →
help  →
wiki  →
ARTICLE ORIGINS
local class field theory
[ temporary import ]
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
In mathematics, local class field theory, introduced by Helmut Hasse,{{Citation | last1=Hasse | first1=H. | author1-link=Helmut Hasse | title=Die Normenresttheorie relativ-Abelscher ZahlkÃ¶rper als KlassenkÃ¶rpertheorie im Kleinen. | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002171171 | language=German | doi=10.1515/crll.1930.162.145 | jfm=56.0165.03 | year=1930 | journal=Journal fÃ¼r die reine und angewandte Mathematik | issn=0075-4102 | volume=162 | pages=145â€“154}} is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite residue field: hence every local field is isomorphic (as a topological field) to the real numbers R, the complex numbers C, a finite extension of the p-adic numbers Qp (where p is any prime number), or a finite extension of the field of formal Laurent series Fq((T)) over a finite field Fq.

## Approaches to local class field theory

Local class field theory gives a description of the Galois group G of the maximal abelian extension of a local field K via the reciprocity map which acts from the multiplicative group K×=K{0}. For a finite abelian extension L of K the reciprocity map induces an isomorphism of the quotient group K×/N(L×) of K× by the norm group N(L×) of the extension L× to the Galois group Gal(L/K)of the extension.Fesenko, Ivan and Vostokov, Sergei, Local Fields and their Extensions, 2nd ed., American Mathematical Society, 2002, {{isbn|0-8218-3259-X}}The existence theorem in local class field theory establishes a one-to-one correspondence between open subgroups of finite index in the multiplicative group K× and finite abelian extensions of the field K. For a finite abelian extension L of K the corresponding open subgroup of finite index is the norm group N(L×). The reciprocity map sends higher groups of units to higher ramification subgroups, see e.g. Ch. IV of.Fesenko, Ivan and Vostokov, Sergei, Local Fields and their Extensions, 2nd ed., American Mathematical Society, 2002, {{isbn|0-8218-3259-X}}Using the local reciprocity map, one defines the Hilbert symbol and its generalizations. Finding explicit formulas for it is one of subdirections of the theory of local fields, it has a long and rich history, see e.g. Sergei Vostokov's review.JOURNAL, Sergei V Vostokov, Explicit formulas for the Hilbert symbol, In Invitation to higher local fields, Geometry and Topology Monographs, 3, 2000, 81â€“90, 10.2140/gtm.2000.3,weblink There are cohomological approaches and non-cohomological approaches to local class field theory. Cohomological approaches tend to be non-explicit, since they use the cup-product of the first Galois cohomology groups.For various approaches to local class field theory see Ch. IV and sect. 7 Ch. IV of Fesenko, Ivan and Vostokov, Sergei, Local Fields and their Extensions, 2nd ed., American Mathematical Society, 2002, {{isbn|0-8218-3259-X}} They include the Hasse approach of using the Brauer group, cohomological approaches, the explicit methods of JÃ¼rgen Neukirch, Michiel Hazewinkel, the Lubin-Tate theory and others.

## Generalizations of local class field theory

Generalizations of local class field theory to local fields with quasi-finite residue field were easy extensions of the theory, obtained by G. Whaples in the 1950s, see chapter V of{{Clarify|date=March 2018}}.JOURNAL, Sergei V Vostokov, Explicit formulas for the Hilbert symbol, In Invitation to higher local fields, Geometry and Topology Monographs, 3, 2000, 81â€“90, 10.2140/gtm.2000.3,weblink Explicit p-class field theory for local fields with perfect and imperfect residue fields which are not finite has to deal with the new issue of norm groups of infinite index. Appropriate theories were constructed by Ivan Fesenko.JOURNAL, Local class field theory: perfect residue field case, I. Fesenko, Russian Academy of Sciences, Izvestiya Mathematics, 43, 1, 1994, 65â€“81, JOURNAL, Fesenko, I., On general local reciprocity maps, Journal fÃ¼r die reine und angewandte Mathematik, 473, 1996, 207â€“222, Fesenko's noncommutative local class field theory for arithmetically profinite Galois extensions of local fields studies appropriate local reciprocity cocycle map and its properties.BOOK, Fesenko, I., Nonabelian local reciprocity maps, Class Field Theory â€“ Its Centenary and Prospect, Advanced Studies in Pure Math, 2001, 63â€“78, 4-931469-11-6, This arithmetic theory can be viewed as an alternative to the representation theoretical local Langlands correspondence.

## Higher local class field theory

For a higher-dimensional local field K there is a higher local reciprocity map which describes abelian extensions of the field in terms of open subgroups of finite index in the Milnor K-group of the field. Namely, if K is an n-dimensional local field then one uses mathrm{K}^{mathrm{M}}_n(K) or its separated quotient endowed with a suitable topology. When n=1 the theory becomes the usual local class field theory. Unlike the classical case, Milnor K-groups do not satisfy Galois module descent if n>1. General higher-dimensional local class field theory was developed by K. Kato and I. Fesenko.Higher local class field theory is part of higher class field theory which studies abelian extensions (resp. abelian covers) of rational function fields of proper regular schemes flat over integers.

## References

{{reflist}}

• {{Citation | last1=Fesenko | first1=Ivan | last2=Vostokov | first2=Sergey |title=Local Fields and their Extensions |edition=2nd

| url=https://www.maths.nottingham.ac.uk/personal/ibf/book/book.html | publisher=American Mathematical Society | isbn=978-0-19-504030-2 | year=2002}}
• {{Citation| editor-last=Fesenko| editor-first=Ivan B.| editor-link=Ivan Fesenko| editor2-last=Kurihara title=Invitation to Higher Local Fields Mathematical Sciences Publishers> location= University of Warwick series=Geometry and Topology Monographs edition=First issn=1464-8989 | zbl=0954.00026 }} {{Citation | last1=Iwasawa | first1=Kenkichi | title=Local class field theory | url=https://books.google.com/books?id=iJ7vAAAAMAAJ | publisher=The Clarendon Press Oxford University Press | series=Oxford Science Publications | isbn=978-0-19-504030-2 | mr=863740 | year=1986}} {{Citation | last1=Neukirch | first1=JÃ¼rgen | author1-link=JÃ¼rgen Neukirch | title=Class field theory | url=https://books.google.com/books?id=5_vuAAAAMAAJ | publisher=Springer-Verlag | location=Berlin, New York | series=Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] | isbn=978-3-540-15251-4 | mr=819231 | year=1986 | volume=280}} {{Citation | last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | editor1-last=Cassels | editor1-first=John William Scott | editor2-last=FrÃ¶hlich | editor2-first=Albrecht | title=Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) | url=https://books.google.com/books?id=DQP_RAAACAAJ | publisher=Thompson, Washington, D.C. | isbn=978-0-9502734-2-6 | mr=0220701 | year=1967 | chapter=Local class field theory | pages=128â€“161}} {{Citation | last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | title=Corps Locaux (English translation: Local Fields) | origyear=1962 | url=https://books.google.com/books?id=DAxlMdw_QloC | publisher=Springer-Verlag | location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-90424-5 | mr=0150130 | year=1979 | volume=67}}

- content above as imported from Wikipedia
- "local class field theory" does not exist on GetWiki (yet)
- time: 2:01pm EST - Fri, Feb 15 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
GETWIKI 18 AUG 2014
Wikinfo
Culture
CONNECT