GetWiki
isomorphism
ARTICLE SUBJECTS
being →
database →
ethics →
fiction →
history →
internet →
language →
linux →
logic →
method →
news →
policy →
purpose →
religion →
science →
software →
truth →
unix →
wiki →
ARTICLE TYPES
essay →
feed →
help →
system →
wiki →
ARTICLE ORIGINS
critical →
forked →
imported →
original →
isomorphism
please note:
 the content below is remote from Wikipedia
 it has been imported raw for GetWiki
{{short descriptionIn mathematics, invertible homomorphism}}{{Aboutmathematics}}{{multiple image< 2} and B = {1, 0, 1} ,are equal; they are merely different representationsâ€”the first an intensional one (in set builder notation), and the second extensional (by explicit enumeration)â€”of the same subset of the integers. By contrast, the sets {A,B,C} and {1,2,3} are not equalâ€”the first has elements that are letters, while the second has elements that are numbers. These are isomorphic as sets, since finite sets are determined up to isomorphism by their cardinality (number of elements) and these both have three elements, but there are many choices of isomorphismâ€”one isomorphism is
 the content below is remote from Wikipedia
 it has been imported raw for GetWiki
text{A} mapsto 1, text{B} mapsto 2, text{C} mapsto 3, while another is text{A} mapsto 3, text{B} mapsto 2, text{C} mapsto 1,
and no one isomorphism is intrinsically better than any other.A, B, C have a conventional order, namely alphabetical order, and similarly 1, 2, 3 have the order from the integers, and thus one particular isomorphism is "natural", namely
text{A} mapsto 1, text{B} mapsto 2, text{C} mapsto 3.
More formally, as sets these are isomorphic, but not naturally isomorphic (there are multiple choices of isomorphism), while as ordered sets they are naturally isomorphic (there is a unique isomorphism, given above), since finite total orders are uniquely determined up to unique isomorphism by cardinality.This intuition can be formalized by saying that any two finite totally ordered sets of the same cardinality have a natural isomorphism, the one that sends the least element of the first to the least element of the second, the least element of what remains in the first to the least element of what remains in the second, and so forth, but in general, pairs of sets of a given finite cardinality are not naturally isomorphic because there is more than one choice of mapâ€”except if the cardinality is 0 or 1, where there is a unique choice.In fact, there are precisely 3! = 6 different isomorphisms between two sets with three elements. This is equal to the number of automorphisms of a given threeelement set (which in turn is equal to the order of the symmetric group on three letters), and more generally one has that the set of isomorphisms between two objects, denoted operatorname{Iso}(A,B), is a torsor for the automorphism group of A, operatorname{Aut}(A) and also a torsor for the automorphism group of B. In fact, automorphisms of an object are a key reason to be concerned with the distinction between isomorphism and equality, as demonstrated in the effect of change of basis on the identification of a vector space with its dual or with its double dual, as elaborated in the sequel. On this view and in this sense, these two sets are not equal because one cannot consider them identical: one can choose an isomorphism between them, but that is a weaker claim than identityâ€”and valid only in the context of the chosen isomorphism.Sometimes the isomorphisms can seem obvious and compelling, but are still not equalities. As a simple example, the genealogical relationships among Joe, John, and Bobby Kennedy are, in a real sense, the same as those among the American footballquarterbacks in the Manning family: Archie, Peyton, and Eli. The fatherson pairings and the elderbrotheryoungerbrother pairings correspond perfectly. That similarity between the two family structures illustrates the origin of the word isomorphism (Greek iso, "same," and morph, "form" or "shape"). But because the Kennedys are not the same people as the Mannings, the two genealogical structures are merely isomorphic and not equal.Another example is more formal and more directly illustrates the motivation for distinguishing equality from isomorphism: the distinction between a finitedimensional vector spaceV and its dual space {{nowrap1=V* = { Ï†: V â†’ K }}} of linear maps from V to its field of scalars K.These spaces have the same dimension, and thus are isomorphic as abstract vector spaces (since algebraically, vector spaces are classified by dimension, just as sets are classified by cardinality), but there is no "natural" choice of isomorphism scriptstyle V , overset{sim}{to} , V^*.If one chooses a basis for V, then this yields an isomorphism: For all {{nowrap1=u. v âˆˆ V}},
v overset{sim}{mapsto} phi_v in V^* quad text{such that} quad phi_v(u) = v^mathrm{T} u.
This corresponds to transforming a column vector (element of V) to a row vector (element of V*) by transpose, but a different choice of basis gives a different isomorphism: the isomorphism "depends on the choice of basis".More subtly, there is a map from a vector space V to its double dual {{nowrap1= V** = { x: V* â†’ K }}} that does not depend on the choice of basis: For all {{nowrap1=v âˆˆ V and Ï† âˆˆ V*,}}
v overset{sim}{mapsto} x_v in V^{**} quad text{such that} quad x_v(phi) = phi(v).
This leads to a third notion, that of a natural isomorphism: while V and V** are different sets, there is a "natural" choice of isomorphism between them.This intuitive notion of "an isomorphism that does not depend on an arbitrary choice" is formalized in the notion of a natural transformation; briefly, that one may consistently identify, or more generally map from, a finitedimensional vector space to its double dual, scriptstyle V , overset{sim}{to} , V^{**}, for any vector space in a consistent way.Formalizing this intuition is a motivation for the development of category theory.However, there is a case where the distinction between natural isomorphism and equality is usually not made. That is for the objects that may be characterized by a universal property. In fact, there is a unique isomorphism, necessarily natural, between two objects sharing the same universal property. A typical example is the set of real numbers, which may be defined through infinite decimal expansion, infinite binary expansion, Cauchy sequences, Dedekind cuts and many other ways. Formally these constructions define different objects, which all are solutions of the same universal property. As these objects have exactly the same properties, one may forget the method of construction and considering them as equal. This is what everybody does when talking of "the set of the real numbers". The same occurs with quotient spaces: they are commonly constructed as sets of equivalence classes. However, talking of set of sets may be counterintuitive, and quotient spaces are commonly considered as a pair of a set of undetermined objects, often called "points", and a surjective map onto this set.If one wishes to draw a distinction between an arbitrary isomorphism (one that depends on a choice) and a natural isomorphism (one that can be done consistently), one may write {{mathâ‰ˆ}} for an unnatural isomorphism and {{mathâ‰…}} for a natural isomorphism, as in {{math1=V â‰ˆ V*}} and {{math1=V â‰… V**.}}This convention is not universally followed, and authors who wish to distinguish between unnatural isomorphisms and natural isomorphisms will generally explicitly state the distinction.Generally, saying that two objects are equal is reserved for when there is a notion of a larger (ambient) space that these objects live in. Most often, one speaks of equality of two subsets of a given set (as in the integer set example above), but not of two objects abstractly presented. For example, the 2dimensional unit sphere in 3dimensional space
S^2 := { (x,y,z) in mathbb{R}^3 mid x^2 + y^2 + z^2 = 1} and the Riemann sphere widehat{mathbb{C}}
which can be presented as the onepoint compactification of the complex plane {{math1=C âˆª {âˆž}}} or as the complex projective line (a quotient space)
mathbf{P}_{mathbb{C}}^1 := (mathbb{C}^2setminus {(0,0)}) / (mathbb{C}^*)
are three different descriptions for a mathematical object, all of which are isomorphic, but not equal because they are not all subsets of a single space: the first is a subset of R3, the second is {{math1=C â‰… R}}2Being precise, the identification of the complex numbers with the real plane,
mathbf{C} cong mathbf{R}cdot 1 oplus mathbf{R} cdot i = mathbf{R}^2
depends on a choice of i; one can just as easily choose (i),, which yields a different identificationâ€”formally, complex conjugation is an automorphismâ€”but in practice one often assumes that one has made such an identification. plus an additional point, and the third is a subquotient of C2In the context of category theory, objects are usually at most isomorphicâ€”indeed, a motivation for the development of category theory was showing that different constructions in homology theory yielded equivalent (isomorphic) groups. Given maps between two objects X and Y, however, one asks if they are equal or not (they are both elements of the set Hom(X, Y), hence equality is the proper relationship), particularly in commutative diagrams.See also
Notes
{{Reflistgroup=note}}References
{{refimprovedate=September 2010}}{{Reflist}}Further reading
 {{Citation  first = Barry  last = Mazur  authorlink = Barry Mazur  title = When is one thing equal to some other thing?  date = 12 June 2007  url =weblink  ref = harv}}
External links
{{Wiktionaryisomorphism}} {{springertitle=Isomorphismid=p/i052840}}
 {{planetmath referenceid=1936title=Isomorphism}}
 {{MathWorld  urlname=Isomorphism  title = Isomorphism}}
 content above as imported from Wikipedia
 "isomorphism" does not exist on GetWiki (yet)
 time: 3:58am EDT  Mon, Aug 19 2019
 "isomorphism" does not exist on GetWiki (yet)
 time: 3:58am EDT  Mon, Aug 19 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GetMeta:About
GetWiki
GetWiki
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
Biographies
GETWIKI 20 AUG 2014
GetMeta:News
GetWiki
GetWiki
GETWIKI 19 AUG 2014
© 2019 M.R.M. PARROTT  ALL RIGHTS RESERVED
Group (mathematics)>group of fifth roots of unity under multiplication is isomorphic to the group of rotations of the regular pentagon under composition. width = 200 image1 = One5Root.svg alt1 = Fifth roots of unity image2 = Regular polygon 5 annotated.svg alt2 = Rotations of a pentagon}}In mathematics, an isomorphism (from the Ancient Greek: (wikt:á¼´ÏƒÎ¿Ï‚á¼´ÏƒÎ¿Ï‚) isos "equal", and (wikt:Î¼Î¿ÏÏ†Î®Î¼Î¿ÏÏ†Î®) morphe "form" or "shape") is a homomorphism or morphism (i.e. a mathematical mapping) that can be reversed by an inverse morphism. Two mathematical objects are isomorphic if an isomorphism exists between them. An automorphism is an isomorphism whose source and target coincide. The interest of isomorphisms lies in the fact that two isomorphic objects cannot be distinguished by using only the properties used to define morphisms; thus isomorphic objects may be considered the same as long as one considers only these properties and their consequences.For most algebraic structures, including groups and rings, a homomorphism is an isomorphism if and only if it is bijective.In topology, where the morphisms are continuous functions, isomorphisms are also called homeomorphisms or bicontinuous functions. In mathematical analysis, where the morphisms are differentiable functions, isomorphisms are also called diffeomorphisms.A canonical isomorphism is a canonical map that is an isomorphism. Two objects are said to be canonically isomorphic if there is a canonical isomorphism between them. For example, the canonical map from a finitedimensional vector space V to its second dual space is a canonical isomorphism; on the other hand, V is isomorphic to its dual space but not canonically in general.Isomorphisms are formalized using category theory. A morphism {{nowrapf : X â†’ Y}} in a category is an isomorphism if it admits a twosided inverse, meaning that there is another morphism {{nowrapg : Y â†’ X}} in that category such that {{nowrapgf {{=}} 1X}} and {{nowrapfg {{=}} 1Y}}, where 1X and 1Y are the identity morphisms of X and Y respectively.BOOK, Awodey, Steve, Isomorphisms, Category theory, Oxford University Press, 2006, 9780198568612, 11,weblink ExamplesLogarithm and exponentialLet mathbb{R}^+ be the multiplicative group of positive real numbers, and let mathbb{R} be the additive group of real numbers.The logarithm function log colon mathbb{R}^+ to mathbb{R} satisfies log(xy) = log x + log y for all x,y in mathbb{R}^+, so it is a group homomorphism. The exponential function exp colon mathbb{R} to mathbb{R}^+ satisfies exp(x+y) = (exp x)(exp y) for all x,y in mathbb{R}, so it too is a homomorphism.The identities log exp x = x and exp log y = y show that log and exp are inverses of each other. Since log is a homomorphism that has an inverse that is also a homomorphism, log is an isomorphism of groups.Because log is an isomorphism, it translates multiplication of positive real numbers into addition of real numbers. This facility makes it possible to multiply real numbers using a ruler and a table of logarithms, or using a slide rule with a logarithmic scale.Integers modulo 6Consider the group (mathbb{Z}_6, +), the integers from 0 to 5 with addition modulo 6. Also consider the group (mathbb{Z}_2 times mathbb{Z}_3, +), the ordered pairs where the x coordinates can be 0 or 1, and the y coordinates can be 0, 1, or 2, where addition in the xcoordinate is modulo 2 and addition in the ycoordinate is modulo 3.These structures are isomorphic under addition, under the following scheme:
(0,0) â†¦ 0
(1,1) â†¦ 1
(0,2) â†¦ 2
(1,0) â†¦ 3
(0,1) â†¦ 4
(1,2) â†¦ 5
or in general {{nowrap(a,b) â†¦ (3a + 4b)}} mod 6.For example, {{nowrap1=(1,1) + (1,0) = (0,1)}}, which translates in the other system as {{nowrap1=1 + 3 = 4}}.Even though these two groups "look" different in that the sets contain different elements, they are indeed isomorphic: their structures are exactly the same. More generally, the direct product of two cyclic groups mathbb{Z}_m and mathbb{Z}_n is isomorphic to (mathbb{Z}_{mn}, +) if and only if m and n are coprime, per the Chinese remainder theorem.Relationpreserving isomorphismIf one object consists of a set X with a binary relation R and the other object consists of a set Y with a binary relation S then an isomorphism from X to Y is a bijective function {{nowrap1=Æ’: X â†’ Y}} such that:BOOK, Vinberg, Ä–rnest Borisovich, A Course in Algebra, American Mathematical Society, 2003, 9780821834138, 3,weblink
operatorname{S}(f(u),f(v)) iff operatorname{R}(u,v)
S is reflexive, irreflexive, symmetric, antisymmetric, asymmetric, transitive, total, trichotomous, a partial order, total order, wellorder, strict weak order, total preorder (weak order), an equivalence relation, or a relation with any other special properties, if and only if R is.For example, R is an ordering â‰¤ and S an ordering scriptstyle sqsubseteq, then an isomorphism from X to Y is a bijective function {{nowrap1=Æ’: X â†’ Y}} such that
f(u) sqsubseteq f(v) iff u le v .
Such an isomorphism is called an order isomorphism or (less commonly) an isotone isomorphism.If {{nowrap1=X = Y}}, then this is a relationpreserving automorphism.Isomorphism vs. bijective morphismIn a concrete category (that is, a category whose objects are sets (perhaps with extra structure) and whose morphisms are structurepreserving functions), such as the category of topological spaces or categories of algebraic objects like groups, rings, and modules, an isomorphism must be bijective on the underlying sets. In algebraic categories (specifically, categories of varieties in the sense of universal algebra), an isomorphism is the same as a homomorphism which is bijective on underlying sets. However, there are concrete categories in which bijective morphisms are not necessarily isomorphisms (such as the category of topological spaces), and there are categories in which each object admits an underlying set but in which isomorphisms need not be bijective (such as the homotopy category of CWcomplexes).ApplicationsIn abstract algebra, two basic isomorphisms are defined:
Relation with equality{{See alsoEquality (mathematics)}}In certain areas of mathematics, notably category theory, it is valuable to distinguish between equality on the one hand and isomorphism on the other.{{HarvnbMazur2007}} Equality is when two objects are exactly the same, and everything that's true about one object is true about the other, while an isomorphism implies everything that's true about a designated part of one object's structure is true about the other's. For example, the sets
A = { x in mathbb{Z} mid x^2
