SUPPORT THE WORK

GetWiki

boson

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
boson
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{short description|A class of particle that follows Bose–Einstein statistics}}{{other uses}}File:Bosons-Hadrons-Fermions-RGB-pdf.pdf|thumb|331x331px|How bosons fit with other classes of sub atomic particles, hadrons and fermions.]]{{Use dmy dates|date=December 2013}}In quantum mechanics, a boson ({{IPAc-en|ˈ|b|oʊ|s|ɒ|n}},BOOK, Longman pronunciation dictionary, John C., Wells, Longman, Harlow, England, 1990, 978-0582053830, entry "Boson"
{{IPAc-en|ˈ|b|oʊ|z|ɒ|n}}"MEMBERWIDE">
WEBSITE=COLLINS DICTIONARY Bose–Einstein statistics. Bosons make up one of the two classes of elementary particle>particles, the other being fermions.CARROLL, SEAN >YEAR=2007 TITLE=GUIDEBOOK PUBLISHER=THE TEACHING COMPANY QUOTE=... BOSON: A FORCE-CARRYING PARTICLE, AS OPPOSED TO A MATTER PARTICLE (FERMION). BOSONS CAN BE PILED ON TOP OF EACH OTHER WITHOUT LIMIT. EXAMPLES INCLUDE PHOTONS, GLUONS, GRAVITONS, WEAK BOSONS, AND THE HIGGS BOSON. THE SPIN OF A BOSON IS ALWAYS AN INTEGER, SUCH AS 0, 1, 2, AND SO ON ..., The name boson was coined by Paul DiracNOTES ON DIRAC'S LECTURE DEVELOPMENTS IN ATOMIC THEORY AT LE PALAIS DE LA DéCOUVERTE, 6 DECEMBER 1945 >PUBLISHER=UKNATARCHI DIRAC PAPERS LAST=FARMELODATE=2009-08-25YEAR=LOCATION=LANGUAGE=EN, to commemorate the contribution of Indian physicist and professor of physics at University of Calcutta and at University of Dhaka, Satyendra Nath BoseDAIGLE >FIRST=KATY URL=HTTP://APNEWS.EXCITE.COM/ARTICLE/20120710/D9VU1DRG0.HTML NEWSPAPER=AP NEWS TITLE=THE BOSE IN THE BOSON DATE=19 SEPTEMBER 2012 THE NEW YORK TIMES BLOG >ACCESS-DATE=21 SEPTEMBER 2012, in developing, with Albert Einstein, Bose–Einstein statistics—which theorizes the characteristics of elementary particles.HTTPS://WWW.BBC.CO.UK/NEWS/MAGAZINE-18708741 >TITLE=HIGGS BOSON: THE POETRY OF SUBATOMIC PARTICLES WORK=BBC NEWS, 6 July 2012, Examples of bosons include fundamental particles such as photons, gluons, and W and Z bosons (the four force-carrying gauge bosons of the Standard Model), the recently discovered Higgs boson, and the hypothetical graviton of quantum gravity. Some composite particles are also bosons, such as mesons and stable nuclei of even mass number such as deuterium (with one proton and one neutron, atomic mass number = 2), helium-4, or lead-208;Even-mass-number nuclides, which comprise 153/254 = ~ 60% of all stable nuclides, are bosons, i.e. they have integer spin. Almost all (148 of the 153) are even-proton, even-neutron (EE) nuclides, which necessarily have spin 0 because of pairing. The remaining 5 stable bosonic nuclides are odd-proton or odd-neutron stable nuclides (see even and odd atomic nuclei#Odd proton, odd neutron); these odd–odd bosons are: {{nuclide|Hydrogen|2|link=yes}}, {{nuclide|Lithium|6|link=yes}},{{nuclide|Boron|10|link=yes}}, {{nuclide|Nitrogen|14|link=yes}} and {{nuclide|Tantalum|180|m}}). All have nonzero integer spin. as well as some quasiparticles (e.g. Cooper pairs, plasmons, and phonons).BOOK, Poole, Charles P. Jr., Encyclopedic Dictionary of Condensed Matter Physics,weblink 11 March 2004, Academic Press, 978-0-08-054523-3, {{rp|130}}An important characteristic of bosons is that their statistics do not restrict the number of them that occupy the same quantum state. This property is exemplified by helium-4 when it is cooled to become a superfluid.HTTP://WWW.MERRIAM-WEBSTER.COM/DICTIONARY/BOSON >ARTICLE=BOSON ACCESS-DATE=21 MARCH 2010, Unlike bosons, two identical fermions cannot occupy the same quantum space. Whereas the elementary particles that make up matter (i.e. leptons and quarks) are fermions, the elementary bosons are force carriers that function as the 'glue' holding matter together.CARROLL >FIRST=SEAN URL=HTTP://WWW.SYMMETRYMAGAZINE.ORG/ARTICLE/JANUARY-2013/BOSONS PUBLISHER=FERMILAB/SLAC spin (physics)>spin (s = 0, 1, 2, etc.) as a consequence of the spin–statistics theorem.When a gas of Bose particles is cooled down to temperatures very close to absolute zero, then the kinetic energy of the particles decreases to a negligible amount, and they condense into the lowest energy level state. This state is called a Bose-Einstein condensate. It is believed that this property is the explanation of superfluidity.

Types

Bosons may be either elementary, like photons, or composite, like mesons.While most bosons are composite particles, in the Standard Model of Particle Physics there are five bosons which are elementary:

{{Subatomic particle|link=yes|Higgs Boson}} Higgs boson


{{Subatomic particle|link=yes|Photon}}   Photon {{Subatomic particle|link=yes|Gluon}}   Gluons (eight different types) {{Subatomic particle|link=yes|Z boson}}   Neutral weak boson {{Subatomic particle|link=yes|W boson+-}}   Charged weak bosons (two types)
There may be a sixth tensor boson (spin=2), the graviton (G), that would be the force-carrier for gravity. It remains a hypothetical elementary particle since all attempts so far to incorporate gravitation into the Standard Model have failed. If the graviton does exist, it must be a boson, and could conceivably be a gauge boson.Despite being the carrier of the gravitational force which interacts with mass, the graviton is expected to have no mass.Composite bosons, such as helium nuclei, are important in superfluidity and other applications of Bose–Einstein condensates.

Properties

missing image!
- Symmetricwave2.png -
Symmetric wavefunction for a (bosonic) 2-particle state in an infinite square well potential.
Bosons differ from fermions, which obey Fermi–Dirac statistics. Two or more identical fermions cannot occupy the same quantum state (see Pauli exclusion principle).Since bosons with the same energy can occupy the same place in space, bosons are often force carrier particles, including composite bosons such as mesons. Fermions are usually associated with matter (although in quantum mechanics the distinction between the two concepts is not clearcut).Bosons are particles which obey Bose–Einstein statistics: When one swaps two bosons (of the same species), the wavefunction of the system is unchanged.BOOK, Srednicki, Mark, 2007,weblink Quantum Field Theory, Cambridge University Press, 28–29, 978-0-521-86449-7, Fermions, on the other hand, obey Fermi–Dirac statistics and the Pauli exclusion principle: Two fermions cannot occupy the same quantum state, accounting for the "rigidity" or "stiffness" of matter which includes fermions. Thus fermions are sometimes said to be the constituents of matter, while bosons are said to be the particles that transmit interactions (force carriers), or the constituents of radiation. The quantum fields of bosons are bosonic fields, obeying canonical commutation relations.The properties of lasers and masers, superfluid helium-4 and Bose–Einstein condensates are all consequences of statistics of bosons. Another result is that the spectrum of a photon gas in thermal equilibrium is a Planck spectrum, one example of which is black-body radiation; another is the thermal radiation of the opaque early Universe seen today as microwave background radiation. Interactions between elementary particles are called fundamental interactions. The fundamental interactions of virtual bosons with real particles result in all forces we know.All known elementary and composite particles are bosons or fermions, depending on their spin: Particles with half-integer spin are fermions; particles with integer spin are bosons. In the framework of nonrelativistic quantum mechanics, this is a purely empirical observation. In relativistic quantum field theory, the spin–statistics theorem shows that half-integer spin particles cannot be bosons and integer spin particles cannot be fermions.BOOK, Sakurai, J.J., 1994, Modern Quantum Mechanics, Revised, 362, Addison-Wesley, 978-0-201-53929-5, In large systems, the difference between bosonic and fermionic statistics is only apparent at large densities — when their wave functions overlap. At low densities, both types of statistics are well approximated by Maxwell–Boltzmann statistics, which is described by classical mechanics.

Elementary bosons

{{Standard model of particle physics|cTopic=Elementary particles}}{{See also|List of particles#Bosons}}All observed elementary particles are either fermions or bosons. The observed elementary bosons are all gauge bosons: photons, W and Z bosons, gluons, except the Higgs boson which is a scalar boson. Finally, many approaches to quantum gravity postulate a force carrier for gravity, the graviton, which is a boson of spin plus or minus two.

Composite bosons

{{see also|List of particles#Composite particles}}Composite particles (such as hadrons, nuclei, and atoms) can be bosons or fermions depending on their constituents. More precisely, because of the relation between spin and statistics, a particle containing an even number of fermions is a boson, since it has integer spin.Examples include the following:
  • Any meson, since mesons contain one quark and one antiquark.
  • The nucleus of a carbon-12 atom, which contains 6 protons and 6 neutrons.
  • The helium-4 atom, consisting of 2 protons, 2 neutrons and 2 electrons.
  • The nucleus of deuterium, known as a deuteron, and its anti-particle.
The number of bosons within a composite particle made up of simple particles bound with a potential has no effect on whether it is a boson or a fermion.

Quantum states

Bose–Einstein statistics encourages identical bosons to crowd into one quantum state, but not any state is necessarily convenient for it. Aside of statistics, bosons can interact – for example, helium-4 atoms are repulsed by intermolecular force on a very close approach, and if one hypothesizes their condensation in a spatially-localized state, then gains from the statistics cannot overcome a prohibitive force potential. A spatially-delocalized state (i.e. with low {{abs|ψ(x)}}) is preferable: if the number density of the condensate is about the same as in ordinary liquid or solid state, then the repulsive potential for the N-particle condensate in such state can be no higher than for a liquid or a crystalline lattice of the same N particles described without quantum statistics. Thus, Bose–Einstein statistics for a material particle is not a mechanism to bypass physical restrictions on the density of the corresponding substance, and superfluid liquid helium has a density comparable to the density of ordinary liquid matter. Spatially-delocalized states also permit for a low momentum according to the uncertainty principle, hence for low kinetic energy; this is why superfluidity and superconductivity are usually observed in low temperatures.Photons do not interact with themselves and hence do not experience this difference in states where to crowd (see squeezed coherent state).

See also

  • {{annotated link|Anyon}}
  • {{annotated link|Bose gas}}
  • {{annotated link|Identical particles}}
  • {{annotated link|Parastatistics}}
  • {{annotated link|Fermion}}

Notes

{{notelist}}

References

{{reflist|2}}{{particles}}{{Authority control}}

- content above as imported from Wikipedia
- "boson" does not exist on GetWiki (yet)
- time: 1:29pm EDT - Wed, Mar 20 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
GETWIKI 18 AUG 2014
Wikinfo
Culture
CONNECT