SUPPORT THE WORK

# GetWiki

### argument (complex analysis)

ARTICLE SUBJECTS
news  →
unix  →
wiki  →
ARTICLE TYPES
feed  →
help  →
wiki  →
ARTICLE ORIGINS
argument (complex analysis)
[ temporary import ]
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{redirect|Arg (mathematics)|argument of a function|Argument of a function}}File:Complex_number_illustration_modarg.svg|thumb|right|Figure 1. This Argand diagram represents the complex numbers lying on a planeplaneIn mathematics, the argument is a multi-valued function operating on the nonzero complex numbers. With complex number z visualized as a point in the complex plane, the argument of z is the angle between the positive real axis and the line joining the point to the origin, shown as {{math|Ï†}} in figure 1 and denoted arg z. To define a single-valued function, the principal value of the argument (sometimes denoted Arg z) is used. It is chosen to be the unique value of the argument that lies within the interval (â€“Ï€, Ï€].

## Definition

(File:Complex number illustration multiarg.svg|thumb|Figure 2. Two choices for the argument {{mvar|Ï†}})An argument of the complex number {{math|1=z = x + iy}}, denoted {{math|arg(z)}}, is defined in two equivalent ways:
1. Geometrically, in the complex plane, as the angle {{mvar|Ï†}} from the positive real axis to the vector representing {{mvar|z}}. The numeric value is given by the angle in radians and is positive if measured counterclockwise.
2. Algebraically, as any real quantity {{mvar|Ï†}} such that

z = r (cos varphi + i sin varphi) = r e^{ivarphi}
for some positive real {{mvar|r}} (see Euler's formula). The quantity {{mvar|r}} is the modulus of {{mvar|z}}, denoted |{{mvar|z}}|:
r = sqrt{x^2 + y^2}.
The names magnitude, for the modulus, and phase,Dictionary of Mathematics (2002). phase. for the argument, are sometimes used equivalently.Under both definitions, it can be seen that the argument of any non-zero complex number has many possible values: firstly, as a geometrical angle, it is clear that whole circle rotations do not change the point, so angles differing by an integer multiple of {{math|2Ï€}} radians (a complete circle) are the same, as reflected by figure 2 on the right. Similarly, from the periodicity of {{math|sin}} and {{math|cos}}, the second definition also has this property. The argument of zero is usually left undefined.

## Principal value

(File:Principal value of arg.svg|thumb|275px|Figure 3. The principal value {{math|Arg}} of the blue point at {{math|1 + i}} is {{math|Ï€/4}}. The red line here is the branch cut and corresponds to the two red lines in figure 4 seen vertically above each other).)Because a complete rotation around the origin leaves a complex number unchanged, there are many choices which could be made for {{mvar|Ï†}} by circling the origin any number of times. This is shown in figure 2, a representation of the multi-valued (set-valued) function f(x,y)=arg(x+iy), where a vertical line (not shown in the figure) cuts the surface at heights representing all the possible choices of angle for that point.When a well-defined function is required then the usual choice, known as the principal value, is the value in the open-closed interval {{open-closed|âˆ’Ï€ rad, Ï€ rad}}, that is from {{math|âˆ’Ï€}} to {{math|Ï€}} radians, excluding {{math|âˆ’Ï€}} rad itself (equivalently from âˆ’180 to +180 degrees, excluding âˆ’180Â° itself). This represents an angle of up to half a complete circle from the positive real axis in either direction.Some authors define the range of the principal value as being in the closed-open interval {{closed-open|0, 2Ï€}}.

### Notation

The principal value sometimes has the initial letter capitalized as in {{math|Arg z}}, especially when a general version of the argument is also being considered. Note that notation varies, so {{math|arg}} and {{math|Arg}} may be interchanged in different texts.The set of all possible values of the argument can be written in terms of {{math|Arg}} as:
operatorname{arg}(z) in {operatorname{Arg}(z) + 2pi n;|; n in mathbb Z}.
Likewise
operatorname{Arg}(z) = operatorname{arg}(z) - 2pi n;|; n in mathbb Z land -pi < operatorname{arg}(z) - 2pi n le pi .

## Computing from the real and imaginary part

If a complex number is known in terms of its real and imaginary parts, then the function that calculates the principal value {{math|Arg}} is called the two-argument arctangent function atan2:
operatorname{Arg}(x + iy) = operatorname{atan2}(y,, x).
The atan2 function (also called arctan2 or other synonyms) is available in the math libraries of many programming languages, and usually returns a value in the range {{open-closed|âˆ’Ï€, Ï€}}.Many texts say the value is given by {{math|arctan(y/x)}}, as {{math|y/x}} is slope, and {{math|arctan}} converts slope to angle. This is correct only when {{math|x > 0}}, so the quotient is defined and the angle lies between {{math|âˆ’Ï€/2}} and {{math|Ï€/2}}, but extending this definition to cases where {{math|x}} is not positive is relatively involved. Specifically, one may define the principal value of the argument separately on the two half-planes {{math|x > 0}} and {{math|x < 0}} (separated into two quadrants if one wishes a branch cut on the negative {{math|x}}-axis), {{math|y > 0}}, {{math|y < 0}}, and then patch together.
operatorname{Arg}(x + iy) = operatorname{atan2}(y,, x) =
begin{cases}arctan(frac y x) &text{if } x > 0, arctan(frac y x) + pi &text{if } x < 0 text{ and } y ge 0, arctan(frac y x) - pi &text{if } x < 0 text{ and } y < 0, +frac{pi}{2} &text{if } x = 0 text{ and } y > 0, -frac{pi}{2} &text{if } x = 0 text{ and } y < 0, text{undefined} &text{if } x = 0 text{ and } y = 0.end{cases}A compact expression with 4 overlapping half-planes is
operatorname{Arg}(x + iy) = operatorname{atan2}(y,, x) =
begin{cases}arctanleft(frac{y}{x}right) &text{if } x > 0, frac{pi}{2} - arctanleft(frac{x}{y}right) &text{if } y > 0, -frac{pi}{2} - arctanleft(frac{x}{y}right) &text{if } y < 0, arctanleft(frac{y}{x}right) pm pi &text{if } x < 0, text{undefined} &text{if } x = 0 text{ and } y = 0.end{cases}For the variant where {{math|Arg}} is defined to lie in the interval {{closed-open|0, 2Ï€}}, the value can be found by adding {{math|2Ï€}} to the value above when it is negative.Alternatively, the principal value can be calculated in a uniform way using the tangent half-angle formula, the function being defined over the complex plane but excluding the origin:
operatorname{Arg}(x + iy) =
begin{cases}2 arctanleft(frac{y}{sqrt{x^2 + y^2} + x}right) &text{if } x > 0 text{ or } y neq 0, pi &text{if } x < 0 text{ and } y = 0, text{undefined} &text{if } x = 0 text{ and } y = 0.end{cases}This is based on a parametrization of the circle (except for the negative {{mvar|x}}-axis) by rational functions. This version of {{math|Arg}} is not stable enough for floating point computational use (it may overflow near the region {{math|1=x < 0, y = 0}}) but can be used in symbolic calculation.A variant of the last formula which avoids overflow is sometimes used in high precision computation:
operatorname{Arg}(x + iy) =
begin{cases}2 arctanleft(frac{sqrt{x^2 + y^2} - x}{y}right) &text{if } y neq 0, pi &text{if } x < 0 text{ and } y = 0, text{undefined} &text{if } x = 0 text{ and } y = 0.end{cases}

## Identities

One of the main motivations for defining the principal value {{math|Arg}} is to be able to write complex numbers in modulus-argument form. Hence for any complex number {{mvar|z}},
z = left| z right| e^{i operatorname{Arg} z}.
This is only really valid if {{mvar|z}} is non-zero but can be considered as valid also for {{math|1=z = 0}} if {{math|Arg(0)}} is considered as being an indeterminate form rather than as being undefined.Some further identities follow. If {{math|z1}} and {{math|z2}} are two non-zero complex numbers, then
operatorname{Arg}(z_1 z_2) equiv operatorname{Arg}(z_1) + operatorname{Arg}(z_2) pmod{(-pi,pi]}, operatorname{Arg}biggl(frac{z_1}{z_2}biggr) equiv operatorname{Arg}(z_1) - operatorname{Arg}(z_2) pmod{(-pi,pi]}.
If {{math|z â‰  0}} and {{mvar|n}} is any integer, then
operatorname{Arg}left(z^nright) equiv n operatorname{Arg}(z) pmod {(-pi,pi]}.

### Example

operatorname{Arg}biggl(frac{-1- i}{i}biggr) = operatorname{Arg}(-1 - i) - operatorname{Arg}(i) = -frac{3pi}{4} - frac{pi}{2} = -frac{5pi}{4}

### Using the complex logarithm

From z = |z| e^{i theta}, it easily follows that operatorname{Arg}(z) = -i lnleft(frac{z}{|z|}right). This is useful when one has the complex logarithm available.

## References

{{reflist}}

### Bibliography

• BOOK, Ahlfors, Lars, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable

, 3rd, New York;London, McGraw-Hill, 1979
, 0-07-000657-1
,
• BOOK, Ponnuswamy, S., Foundations of Complex Analysis

, 2nd, New Delhi;Mumbai, Narosa, 2005
, 978-81-7319-629-4
,
• BOOK, Beardon, Alan

, Complex Analysis: The Argument Principle in Analysis and Topology
, Chichester, Wiley, 1979
, 0-471-99671-8
,
• BOOK, Borowski, Ephraim, Borwein, Jonathan

, Mathematics, Collins Dictionary, 2002
, 1st ed. 1989 as Dictionary of Mathematics, 0-00-710295-X
, 2nd, HarperCollins, Glasgow,

• {{MathWorld|title=Complex Argument|urlname=ComplexArgument}}

- content above as imported from Wikipedia
- "argument (complex analysis)" does not exist on GetWiki (yet)
- time: 9:23pm EDT - Tue, Jul 23 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
CONNECT