SUPPORT THE WORK

GetWiki

Systematics

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
Systematics
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{short description|The study of the diversification and relationships among living things through time}}{{Other uses}}(File:Phylogenetics.svg|thumb|400px|A comparison of phylogenetic and phenetic (character-based) concepts)Biological systematics is the study of the diversification of living forms, both past and present, and the relationships among living things through time. Relationships are visualized as evolutionary trees (synonyms: cladograms, phylogenetic trees, phylogenies). Phylogenies have two components: branching order (showing group relationships) and branch length (showing amount of evolution). Phylogenetic trees of species and higher taxa are used to study the evolution of traits (e.g., anatomical or molecular characteristics) and the distribution of organisms (biogeography). Systematics, in other words, is used to understand the evolutionary history of life on Earth.

Branches and applications

In the study of biological systematics, researchers use the different branches to further understand the relationships between differing organisms. These branches are used to determine the applications and uses for modern day systematics.Biological systematics classifies species by using three specific branches. Numerical systematics, or biometry, uses biological statistics to identify and classify animals. Biochemical systematics classifies and identifies animals based on the analysis of the material that makes up the living part of a cell—such as the nucleus, organelles, and cytoplasm. Experimental systematics identifies and classifies animals based on the evolutionary units that comprise a species, as well as their importance in evolution itself. Factors such as mutations, genetic divergence, and hybridization all are considered evolutionary units.NEWS,weblink Systematics: Meaning, Branches and Its Application, 2016-05-27, Biology Discussion, 2017-04-12, en-US, With the specific branches, researchers are able to determine the applications and uses for modern-day systematics. These applications include:
  • Studying the diversity of organisms and the differentiation between extinct and living creatures. Biologists study the well-understood relationships by making many different diagrams and "trees" (cladograms, phylogenetic trees, phylogenies, etc.).
  • Including the scientific names of organisms, species descriptions and overviews, taxonomic orders, and classifications of evolutionary and organism histories.
  • Explaining the biodiversity of the planet and its organisms. The systematic study is that of conservation.
  • Manipulating and controlling the natural world. This includes the practice of 'biological control', the intentional introduction of natural predators and disease.

Definition and relation with taxonomy

John Lindley provided an early definition of systematics in 1830, although he wrote of "systematic botany" rather than using the term "systematics".Wilkins, J. S. What is systematics and what is taxonomy?. Available onweblink 1970 Michener et al. defined "systematic biology" and "taxonomy" (terms that are often confused and used interchangeably) in relationship to one another as follows:Michener, Charles D., John O. Corliss, Richard S. Cowan, Peter H. Raven, Curtis W. Sabrosky, Donald S. Squires, and G. W. Wharton (1970). Systematics In Support of Biological Research. Division of Biology and Agriculture, National Research Council. Washington, D.C. 25 pp.Systematic biology (hereafter called simply systematics) is the field that (a) provides scientific names for organisms, (b) describes them, (c) preserves collections of them, (d) provides classifications for the organisms, keys for their identification, and data on their distributions, (e) investigates their evolutionary histories, and (f) considers their environmental adaptations. This is a field with a long history that in recent years has experienced a notable renaissance, principally with respect to theoretical content. Part of the theoretical material has to do with evolutionary areas (topics e and f above), the rest relates especially to the problem of classification. Taxonomy is that part of Systematics concerned with topics (a) to (d) above.Taxonomy, systematic biology, systematics, biosystematics, scientific classification, biological classification, phylogenetics: At various times in history, all these words have had overlapping, related meanings. However, in modern usage, they can all be considered synonyms of each other.For example, Webster's 9th New Collegiate Dictionary of 1987 treats "classification", "taxonomy", and "systematics" as synonyms. According to this work, the terms originated in 1790, c. 1828, and in 1888 respectively. Some{{who|date=July 2013}} claim systematics alone deals specifically with relationships through time, and that it can be synonymous with phylogenetics, broadly dealing with the inferred hierarchy{{citation needed|date=November 2014}} of organisms. This means it would be a subset of taxonomy as it is sometimes regarded, but the inverse is claimed by others.{{who|date=July 2013}}Europeans tend to use the terms "systematics" and "biosystematics" for the study of biodiversity as a whole, whereas North Americans tend to use "taxonomy" more frequently.Brusca, R. C., & Brusca, G. J. (2003). Invertebrates (2nd ed.). Sunderland, Mass. : Sinauer Associates, p. 27 However, taxonomy, and in particular alpha taxonomy, is more specifically the identification, description, and naming (i.e. nomenclature) of organisms,{{Citation |last= Fortey |first= Richard |author-link= Richard Fortey |year=2008
publication-place= London isbn= 978-0-00-720989-7 }}while "classification" focuses on placing organisms within hierarchical groups that show their relationships to other organisms. All of these biological disciplines can deal with both extinct and extant organisms.Systematics uses taxonomy as a primary tool in understanding, as nothing about an organism's relationships with other living things can be understood without it first being properly studied and described in sufficient detail to identify and classify it correctly.{{citation needed|date=November 2014}} Scientific classifications are aids in recording and reporting information to other scientists and to laymen. The systematist, a scientist who specializes in systematics, must, therefore, be able to use existing classification systems, or at least know them well enough to skilfully justify not using them.Phenetics was an attempt to determine the relationships of organisms through a measure of overall similarity, making no distinction between plesiomorphies (shared ancestral traits) and apomorphies (derived traits). From the late-20th century onwards, it was superseded by cladistics, which rejects plesiomorphies in attempting to resolve the phylogeny of Earth's various organisms through time. {{As of | 2014 | alt = Today's}} systematists generally make extensive use of molecular biology and of computer programs to study organisms.

Taxonomic characters

Taxonomic characters are the taxonomic attributes that can be used to provide the evidence from which relationships (the phylogeny) between taxa are inferred.Mayr, Ernst (1991). Principles of Systematic Zoology. New York: McGraw-Hill, p. 159. Kinds of taxonomic characters include:Mayr, Ernst (1991), p. 162.{{col-begin}}{{col-break}}
  • Morphological characters
    • General external morphology
    • Special structures (e.g. genitalia)
    • Internal morphology (anatomy)
    • Embryology
    • Karyology and other cytological factors
  • Physiological characters
    • Metabolic factors
    • Body secretions
    • Genic sterility factors
  • Molecular characters
    • Immunological distance
    • Electrophoretic differences
    • Amino acid sequences of proteins
    • DNA hybridization
    • DNA and RNA sequences
    • Restriction endonuclease analyses
    • Other molecular differences
{{col-break}}
  • Behavioral characters
    • Courtship and other ethological isolating mechanisms
    • Other behavior patterns
  • Ecological characters
    • Habit and habitats
    • Food
    • Seasonal variations
    • Parasites and hosts
  • Geographic characters
    • General biogeographic distribution patterns
    • Sympatric-allopatric relationship of populations
{{col-end}}

See also

{{evolutionary biology}}

References

Notes

{{Reflist}}

Further reading

  • Schuh, Randall T. and Andrew V. Z. Brower. 2009. Biological Systematics: Principles and Applications, 2nd edn. {{ISBN|978-0-8014-4799-0}}
  • Simpson, Michael G. 2005. Plant Systematics. {{ISBN|978-0-12-644460-5}}
  • Wiley, Edward O. and Bruce S. Lieberman. 2011. "Phylogenetics: Theory and Practice of Phylogenetic Systematics, 2nd edn." {{ISBN|978-0-470-90596-8}}

External links

{{Evolution}}{{Biology nav}}{{Authority control}}


- content above as imported from Wikipedia
- "Systematics" does not exist on GetWiki (yet)
- time: 3:56pm EST - Fri, Nov 15 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
CONNECT