aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
essay  →
feed  →
help  →
system  →
wiki  →
critical  →
discussion  →
forked  →
imported  →
original  →
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{short description|A biological interaction where a predator kills and eats a prey organism}}{{Redirect2|Predator|prey|other uses|Predator (disambiguation)|and|Prey (disambiguation)}}{{Use dmy dates|date=December 2011}}File:Polar bear (Ursus maritimus) with its prey.jpg|thumb|upright=1.5|Solitary predator: A polar bear feeds on a bearded sealbearded sealFile:Ants eating cicada, jjron 22.11.2009.jpg|thumb|upright=1.5|Social predators: Meat ants cooperate to feed on a cicadacicadaPredation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation (which usually do not kill the host) and parasitoidism (which always does, eventually). It is distinct from scavenging on dead prey, though many predators also scavenge; it overlaps with herbivory, as a seed predator is both a predator and a herbivore.Predators may actively search for prey or sit and wait for it. When prey is detected, the predator assesses whether to attack it. This may involve ambush or pursuit predation, sometimes after stalking the prey. If the attack is successful, the predator kills the prey, removes any inedible parts like the shell or spines, and eats it.Predators are adapted and often highly specialized for hunting, with acute senses such as vision, hearing, or smell. Many predatory animals, both vertebrate and invertebrate, have sharp claws or jaws to grip, kill, and cut up their prey. Other adaptations include stealth and aggressive mimicry that improve hunting efficiency. Predation has a powerful selective effect on prey, and the prey develop antipredator adaptations such as warning coloration, alarm calls and other signals, camouflage, mimicry of well-defended species, and defensive spines and chemicals. Sometimes predator and prey find themselves in an evolutionary arms race, a cycle of adaptations and counter-adaptations. Predation has been a major driver of evolution since at least the Cambrian period.


File:IndianSpiderWasp.JPG|thumb|upright|left|Spider wasps paralyse and eventually kill their hosts, but are considered parasitoidparasitoidAt the most basic level, predators kill and eat other organisms. However, the concept of predation is broad, defined differently in different contexts, and includes a wide variety of feeding methods; and some relationships that result in the prey's death are not generally called predation. A parasitoid, such as an ichneumon wasp, lays its eggs in or on its host; the eggs hatch into larvae, which eat the host, and it inevitably dies. Zoologists generally call this a form of parasitism, though conventionally parasites are thought not to kill their hosts. A predator can be defined to differ from a parasitoid in two ways: it kills its prey immediately; and it has many prey, captured over its lifetime, where a parasitoid's larva has just one, or at least has its food supply provisioned for it on just one occasion.BOOK, Gurr, Geoff M., Wratten, Stephen D., Snyder, William E., Biodiversity and Insect Pests: Key Issues for Sustainable Management,weblink 2012, John Wiley & Sons, 978-1-118-23185-2, 105, (File:Predation's Boundaries.svg|thumb|upright=1.5|Relation of predation to other feeding strategies)There are other difficult and borderline cases. Micropredators are small animals that, like predators, feed entirely on other organisms; they include fleas and mosquitoes that consume blood from living animals, and aphids that consume sap from living plants. However, since they typically do not kill their hosts, they are now often thought of as parasites.JOURNAL, Poulin, Robert, Robert Poulin (zoologist), Randhawa, Haseeb S., Evolution of parasitism along convergent lines: from ecology to genomics, Parasitology, February 2015, 142, Suppl 1, S6–S15, 10.1017/S0031182013001674, 4413784, 24229807, BOOK, Poulin, Robert, Robert Poulin (zoologist), Rollinson, D., Hay, S. I., The Many Roads to Parasitism: A Tale of Convergence, Advances in Parasitology,weblink 2011, Academic Press, 978-0-12-385897-9, 27–28, Animals that graze on phytoplankton or mats of microbes are predators, as they consume and kill their food organisms; but herbivores that browse leaves are not, as their food plants usually survive the assault. However, when animals eat seeds (seed predation or granivory) or eggs (egg predation), they are consuming entire living organisms, which by definition makes them predators,JOURNAL, Janzen, D. H., 1971, Seed Predation by Animals, Annual Review of Ecology and Systematics, 2, 465, 10.1146/, JOURNAL, Nilsson, Sven G., Björkman, Christer, Forslund, Pär, Höglund, Jacob, Egg predation in forest bird communities on islands and mainland, Oecologia, 66, 4, 1985, 511–515, 10.1007/BF00379342, 28310791, 1985Oecol..66..511N, albeit unconventional ones: for instance, a mouse that eats grass seeds has no adaptations for tracking, catching and subduing prey and its teeth are not adapted to slicing through flesh.Scavengers, organisms that only eat organisms found already dead, are not predators, but many predators such as the jackal and the hyena scavenge when the opportunity arises.JOURNAL, Kane, Adam, Healy, Kevin, Guillerme, Thomas, Ruxton, Graeme D., Jackson, Andrew L., 2017, A recipe for scavenging in vertebrates – the natural history of a behaviour, Ecography, 40, 2, 324–334, 10.1111/ecog.02817, 10468/3213, BOOK, Kruuk, Hans, The Spotted Hyena: A Study of Predation and Social Behaviour, University of California Press, 1972, 978-0226455082, 107–108, Among invertebrates, social wasps (yellowjackets) are both hunters and scavengers of other insects.BOOK, Schmidt, Justin O., Wasps, Encyclopedia of Insects, 2009, Second, 1049–1052, 10.1016/B978-0-12-374144-8.00275-7, 9780123741448,

Taxonomic range

{{further|Carnivorous plant|Nematophagous fungus|Seed predation|Egg predation}}{{Double image|left|Drosera capensis bend.JPG|110|Mouse eating seeds.jpg|177|Carnivorous plant: sundew engulfing an insect|Seed predation: mouse eating seeds}}While examples of predators among mammals and birds are well known, predators can be found in a broad range of taxa. They are common among insects, including mantids, dragonflies, lacewings and scorpionflies. In some species such as the alderfly, only the larvae are predatory (the adults do not eat). Spiders are predatory, as well as other terrestrial invertebrates such as scorpions; centipedes; some mites, snails and slugs; nematodes; and planarian worms.WEB, Predators, parasites and parasitoids,weblink Australian Museum, 19 September 2018, en, In marine environments, most cnidarians (e.g., jellyfish, hydroids), ctenophora (comb jellies), echinoderms (e.g., sea stars, sea urchins, sand dollars, and sea cucumbers) and flatworms are predatory.ENCYCLOPEDIA, Watanabe, James M., Invertebrates, overview, Denny, Mark W., Gaines, Steven Dean, Encyclopedia of tidepools and rocky shores, 2007, University of California Press, 9780520251182, Among crustaceans, lobsters, crabs, shrimps and barnacles are predators,BOOK, Phelan, Jay, What Is life? : a guide to biology, 2009, W.H. Freeman & Co, 9781429223188, 432, Student, and in turn crustaceans are preyed on by nearly all cephalopods (including octopuses, squid and cuttlefish).JOURNAL, Villanueva, Roger, Perricone, Valentina, Fiorito, Graziano, Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits, Frontiers in Physiology, 17 August 2017, 8, 598, 10.3389/fphys.2017.00598, 28861006, 5563153, File:Инфузория туфелька поедает бактерии!.gif|thumb|Paramecium, a predatory ciliate, feeding on bacteriabacteriaSeed predation is restricted to mammals, birds, and insects and is found in almost all terrestrial ecosystems.BOOK, Hulme, P. E., Benkman, C. W., 2002, Granivory, 132–154, Plant animal Interactions: An Evolutionary Approach, C. M. Herrera and O. Pellmyr, Blackwell, 978-0-632-05267-7, Egg predation includes both specialist egg predators such as some colubrid snakes and generalists such as foxes and badgers that opportunistically take eggs when they find them.JOURNAL, Hanssen, Sveinn Are, Erikstad, Kjell Einar, The long-term consequences of egg predation, Behavioral Ecology, 24, 2, 2012, 10.1093/beheco/ars198, 564–569, JOURNAL, Pike, David A., Clark, Rulon W., Manica, Andrea, Tseng, Hui-Yun, Hsu, Jung-Ya, Huang, Wen-San, Surf and turf: predation by egg-eating snakes has led to the evolution of parental care in a terrestrial lizard, Scientific Reports, 6, 1, 22207, 2016-02-26, 10.1038/srep22207, 26915464, 4768160, BOOK, Ainsworth, Gill, Calladine, John, Martay, Blaise, Park, Kirsty, Redpath, Steve, Wernham, Chris, Wilson, Mark, Young, Juliette, Understanding Predation: A review bringing together natural science and local knowledge of recent wild bird population changes and their drivers in Scotland, 2017, Scotland's Moorland Forum, 233–234,weblink 10.13140/RG.2.1.1014.6960, Some plants, like the pitcher plant, the Venus fly trap and the sundew, are carnivorous and consume insects. Some carnivorous fungi catch nematodes using either active traps in the form of constricting rings, or passive traps with adhesive structures.JOURNAL, Pramer, D., 1964, Nematode-trapping fungi, Science, 144, 3617, 382–388, 1713426, 10.1126/science.144.3617.382, Many species of protozoa (eukaryotes) and bacteria (prokaryotes) prey on other microorganisms; the feeding mode is evidently ancient, and evolved many times in both groups.BOOK, Jurkevitch, Edouard, Davidov, Yaacov, Predatory Prokaryotes, Phylogenetic Diversity and Evolution of Predatory Prokaryotes, Springer, 2006, 978-3-540-38577-6, 10.1007/7171_052, 11–56, Among freshwater and marine zooplankton, whether single-celled or multi-cellular, predatory grazing on phytoplankton and smaller zooplankton is common, and found in many species of nanoflagellates, dinoflagellates, ciliates, rotifers, a diverse range of meroplankton animal larvae, and two groups of crustaceans, namely copepods and cladocerans.JOURNAL, Hansen, Per Juel, Bjørnsen, Peter Koefoed, Hansen, Benni Winding, Zooplankton grazing and growth: Scaling within the 2-2,-μm body size range, Limnology and Oceanography, 42, 4, 1997, 10.4319/lo.1997.42.4.0687, 687–704, summarizes findings from many authors.


{{See also|Foraging}}File:Foraging Sequence.svg|thumb|upright=1.8|A basic foragingforagingTo feed, a predator must search for, pursue and kill its prey. These actions form a foraging cycle.JOURNAL, Griffiths, David, Foraging costs and relative prey size, The American Naturalist, November 1980, 116, 5, 743–752, 2460632, 10.1086/283666, BOOK, Wetzel, Robert G., Likens, Gene E., Limnological Analyses, Predator-Prey Interactions, Springer, 2000, 978-1-4419-3186-3, 10.1007/978-1-4757-3250-4_17, 257–262, The predator must decide where to look for prey based on its geographical distribution; and once it has located prey, it must assess whether to pursue it or to wait for a better choice. If it chooses pursuit, its physical capabilities determine the mode of pursuit (e.g., ambush or chase).BOOK, Pianka, Eric R., Evolutionary ecology, 2011, Eric R. Pianka, 78–83, 7th (eBook), BOOK, The economics of consumer choice, MacArthur, Robert H., Geographical ecology : patterns in the distribution of species, 1984, Princeton University Press, 9780691023823, 59–76, Having captured the prey, it may also need to expend energy handling it (e.g., killing it, removing any shell or spines, and ingesting it).BOOK, Kramer, Donald L., Foraging behavior, Fox, C. W., Roff, D. A., Fairbairn, D. J., Evolutionary Ecology: Concepts and Case Studies, 2001, Oxford University Press, 232–238,weblink 9780198030133,


Predators have a choice of search modes ranging from sit-and-wait to active or widely foraging.{{harvnb|Bell|2012|pages=4–5}}BOOK, Eastman, Lucas B., Thiel, Martin, Foraging behavior of crustacean predators and scavengers, Thiel, Martin, Watling, Les, Lifestyles and feeding biology, 2015, Oxford University Press, 9780199797066, 535–556, JOURNAL, Perry, Gad, The Evolution of Search Modes: Ecological versus Phylogenetic Perspectives, The American Naturalist, January 1999, 153, 1, 98–109, 10.1086/303145, 29578765, The sit-and-wait method is most suitable if the prey are dense and mobile, and the predator has low energy requirements. Wide foraging expends more energy, and is used when prey is sedentary or sparsely distributed. There is a continuum of search modes with intervals between periods of movement ranging from seconds to months. Sharks, sunfish, Insectivorous birds and shrews are almost always moving while web-building spiders, aquatic invertebrates, praying mantises and kestrels rarely move. In between, plovers and other shorebirds, freshwater fish including crappies, and the larvae of coccinellid beetles (ladybirds), alternate between actively searching and scanning the environment.File:Thalassarche melanophrys in flight 2 - SE Tasmania.jpg|thumb|left|The black-browed albatrossblack-browed albatrossPrey distributions are often clumped, and predators respond by looking for patches where prey is dense and then searching within patches. Where food is found in patches, such as rare shoals of fish in a nearly empty ocean, the search stage requires the predator to travel for a substantial time, and to expend a significant amount of energy, to locate each food patch. For example, the black-browed albatross regularly makes foraging flights to a range of around {{convert|700|km|mi|abbr=off|-1}}, up to a maximum foraging range of {{convert|3000|km|mi|abbr=off|-1}} for breeding birds gathering food for their young.{{efn|A range of 3000 kilometres means a flight distance of at least 6000 kilometres out and back.}}JOURNAL, Gremillet, D., Wilson, R. P., Wanless, S., Chater, T., Black-browed albatrosses, international fisheries and the Patagonian Shelf, Marine Ecology Progress Series, 2000, 195, 69–280, With static prey, some predators can learn suitable patch locations and return to them at intervals to feed.{{harvnb|Bell|2012|pages=69–188}} The optimal foraging strategy for search has been modelled using the marginal value theorem.JOURNAL, Charnov, Eric L., Optimal foraging, the marginal value theorem, Theoretical Population Biology, 9, 2, 1976, 10.1016/0040-5809(76)90040-x, 129–136,weblink Search patterns often appear random. One such is the Lévy walk, that tends to involve clusters of short steps with occasional long steps. It is a good fit to the behaviour of a wide variety of organisms including bacteria, honeybees, sharks and human hunter-gatherers.JOURNAL, Reynolds, Andy, Liberating Lévy walk research from the shackles of optimal foraging, Physics of Life Reviews, September 2015, 14, 59–83, 10.1016/j.plrev.2015.03.002, 25835600, JOURNAL, Buchanan, Mark, Ecological modelling: The mathematical mirror to animal nature, Nature, 5 June 2008, 453, 7196, 714–716, 10.1038/453714a, 18528368,


File:Ladybug aphids.JPG|thumb|Seven-spot ladybirds select plants of good quality for their aphidaphidHaving found prey, a predator must decide whether to pursue it or keep searching. The decision depends on the costs and benefits involved. A bird foraging for insects spends a lot of time searching but capturing and eating them is quick and easy, so the efficient strategy for the bird is to eat every palatable insect it finds. By contrast, a predator such as a lion or falcon finds its prey easily but capturing it requires a lot of effort. In that case, the predator is more selective. One of the factors to consider is size. Prey that is too small may not be worth the trouble for the amount of energy it provides. Too large, and it may be too difficult to capture. For example, a mantid captures prey with its forelegs and they are optimized for grabbing prey of a certain size. Mantids are reluctant to attack prey that is far from that size. There is a positive correlation between the size of a predator and its prey.A predator may also assess a patch and decide whether to spend time searching for prey in it. This may involve some knowledge of the preferences of the prey; for example, ladybirds can choose a patch of vegetation suitable for their aphid prey.JOURNAL, Williams, Amanda C., Flaxman, Samuel M., Can predators assess the quality of their prey's resource?, Animal Behaviour, 83, 4, 2012, 10.1016/j.anbehav.2012.01.008, 883–890,


To capture prey, predators have a spectrum of pursuit modes that range from overt chase (also known as pursuit predation) to a sudden strike on nearby prey (ambush predation).JOURNAL, Scharf, Inon, Nulman, Einat, Ovadia, Ofer, Bouskila, Amos, September 2006, Efficiency evaluation of two competing foraging modes under different conditions, The American Naturalist, 168, 3, 350–357, 10.1086/506921, 16947110, JOURNAL, Stevens, Alison N. P., 2010, Predation, Herbivory, and Parasitism, Nature Education Knowledge, 3, 10, 36,weblink Another strategy in between ambush and pursuit is ballistic interception, where a predator observes and predicts a prey's motion and then launches its attack accordingly.


{{Double image|right|Western Green Lizard.jpg|200|Sydney-brown-trapdoor-spider 002.jpg|155|Western green lizard ambushes its grasshopper prey.|A trapdoor spider waiting in its burrow to ambush its prey}}Ambush or sit-and-wait predators are carnivorous animals that capture prey by stealth or surprise. In animals, ambush predation is characterized by the predator's scanning the environment from a concealed position until a prey is spotted, and then rapidly executing a fixed surprise attack.JOURNAL, deVries, M. S., Murphy, E. A. K., Patek S. N., Strike mechanics of an ambush predator: the spearing mantis shrimp, 2012, Journal of Experimental Biology, 215, Pt 24, 4374–4384, 10.1242/jeb.075317, 23175528, Vertebrate ambush predators include frogs, fish such as the angel shark, the northern pike and the eastern frogfish.WEB,weblinkweblink" title="">weblink 18 May 2007, Cougar, Hinterland Who's Who, 22 May 2007, Canadian Wildlife Service and Canadian Wildlife Federation, WEB, Pikes (Esocidae),weblink Indiana Division of Fish and Wildlife, 3 September 2018, WEB, Bray, Dianne, Eastern Frogfish, Batrachomoeus dubius,weblink Fishes of Australia, 14 September 2014, Among the many invertebrate ambush predators are trapdoor spiders on land and mantis shrimps in the sea.WEB,weblink Trapdoor spiders, BBC, 12 December 2014, WEB,weblink 12 December 2014, Trapdoor spider, Arizona-Sonora Desert Museum, 2014, Ambush predators often construct a burrow in which to hide, improving concealment at the cost of reducing their field of vision. Some ambush predators also use lures to attract prey within striking range. The capturing movement has to be rapid to trap the prey, given that the attack is not modifiable once launched.{{anchor|Ballistic}}

Ballistic interception

File:Chameleon gab fbi.png|thumb|The chameleonchameleonBallistic interception is the strategy where a predator observes the movement of a prey, predicts its motion, works out an interception path, and then attacks the prey on that path. This differs from ambush predation in that the predator adjusts its attack according to how the prey is moving. Ballistic interception involves a brief period for planning, giving the prey an opportunity to escape. Some frogs wait until snakes have begun their strike before jumping, reducing the time available to the snake to recalibrate its attack, and maximising the angular adjustment that the snake would need to make to intercept the frog in real time. Ballistic predators include insects such as dragonflies, and vertebrates such as archerfish (attacking with a jet of water), chameleons (attacking with their tongues), and some colubrid snakes.JOURNAL, Moore, Talia Y., Biewener, Andrew A., Outrun or Outmaneuver: Predator–Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context, Integrative and Comparative Biology, 55, 6, 1188–97, 2015, 10.1093/icb/icv074, 26117833,weblink


{{Double image|right|Whales Bubble Net Feeding-edit1.jpg|200|Gomphus vulgatissimus with a prey 002.jpg|188|Humpback whales are lunge feeders, filtering thousands of krill from seawater and swallowing them alive.|Dragonflies, like this common clubtail with captured prey, are invertebrate pursuit predators.}}In pursuit predation, predators chase fleeing prey. If the prey flees in a straight line, capture depends only on the predator's being faster than the prey. If the prey manoeuvres by turning as it flees, the predator must react in real time to calculate and follow a new intercept path, such as by parallel navigation, as it closes on the prey. Many pursuit predators use camouflage to approach the prey as close as possible unobserved (stalking) before starting the pursuit. Pursuit predators include terrestrial mammals such as lions, cheetahs, and wolves; marine predators such as dolphins and many predatory fishes, such as tuna;JOURNAL, Gazda, S. K., Connor, R. C., Edgar, R. K., Cox, F., 2005, A division of labour with role specialization in group-hunting bottlenose dolphins (Tursiops truncatus) off Cedar Key, Florida, Proceedings of the Royal Society, 272, 1559, 135–140, 10.1098/rspb.2004.2937, 15695203, 1634948, BOOK, Tyus, Harold M., Ecology and Conservation of Fishes,weblink 2011, CRC Press, 978-1-4398-9759-1, 233, predatory birds (raptors) such as falcons; and insects such as dragonflies.JOURNAL, Combes, S. A., Salcedo, M. K., Pandit, M. M., Iwasaki, J. M., 2013, Capture Success and Efficiency of Dragonflies Pursuing Different Types of Prey, Integrative and Comparative Biology, 53, 5, 787–798, 10.1093/icb/ict072, 23784698, An extreme form of pursuit is endurance or persistence hunting, in which the predator tires out the prey by following it over a long distance, sometimes for hours at a time. The method is used by human hunter-gatherers and in canids such as African wild dogs and domestic hounds. The African wild dog is an extreme persistence predator, tiring out individual prey by following them for many miles at relatively low speed, compared for example to the cheetah's brief high-speed pursuit.JOURNAL, Hubel, Tatjana Y., Myatt, Julia P., Jordan, Neil R., Dewhirst, Oliver P., McNutt, J. Weldon, Wilson, Alan M., Energy cost and return for hunting in African wild dogs and cheetahs, Nature Communications, 7, 2016-03-29, 10.1038/ncomms11034, 27023457, 4820543, 11034, Cursorial hunting strategies range from one extreme of transient acceleration, power and speed to the other extreme of persistence and endurance with prey being fatigued to facilitate capture. Cheetahs use high acceleration, speed and manoeuvrability to capture prey in a relatively short chase4. Dogs and humans are considered to rely on endurance rather than outright speed and manoeuvrability for success when hunting cursorially., A specialised form of pursuit predation is the lunge feeding of baleen whales. These very large marine predators feed on plankton, especially krill, diving and actively swimming into concentrations of plankton, and then taking a huge gulp of water and filtering it through their feathery baleen plates.JOURNAL, Goldbogen, J. A., Calambokidis, J., Shadwick, R. E., Oleson, E. M., McDonald, M. A., Hildebrand, J. A., 2006, Kinematics of foraging dives and lunge-feeding in fin whales,weblink Journal of Experimental Biology, 209, 7, 1231–1244, 10.1242/jeb.02135, 16547295, JOURNAL, Jon G., Sanders, Annabel C., Beichman, Joe, Roman, Jarrod J., Scott, David, Emerson, James J., McCarthy, Peter R., Girguis, 2015, Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores, Nature Communications, 6, 8285, 10.1038/ncomms9285, 26393325, 4595633, 2015NatCo...6E8285S, Pursuit predators may be social, like the lion and wolf that hunt in groups, or solitary, like the cheetah.


{{multiple image|align=right|image1=Bluecat5A.jpg|width1=225|caption1=Catfish has sharp dorsal and pectoral spines which it holds erect to discourage predators such as herons which swallow prey whole.|image2=Osprey eating a fish.jpg|width2=165|caption2=Osprey tears its fish prey apart, avoiding dangers such as sharp spines.}}Once the predator has captured the prey, it has to handle it: very carefully if the prey is dangerous to eat, such as if it possesses sharp or poisonous spines, as in many prey fish. Some catfish such as the Ictaluridae have spines on the back (dorsal) and belly (pectoral) which lock in the erect position; as the catfish thrashes about when captured, these could pierce the predator's mouth, possibly fatally. Some fish-eating birds like the osprey avoid the danger of spines by tearing up their prey before eating it.JOURNAL, Forbes, L. Scott, Prey Defences and Predator Handling Behaviour: The Dangerous Prey Hypothesis, Oikos, 55, 2, 1989, 10.2307/3565418, 155–158, 3565418,

Solitary versus social predation

{{See also|Cooperative hunting}}In social predation, a group of predators cooperates to kill prey. This makes it possible to kill creatures larger than those they could overpower singly; for example, hyenas, and wolves collaborate to catch and kill herbivores as large as buffalo, and lions even hunt elephants.JOURNAL, Lang, Stephen D. J., Farine, Damien R., A multidimensional framework for studying social predation strategies, Nature Ecology & Evolution, 1, 9, 2017, 1230–1239, 10.1038/s41559-017-0245-0, 29046557, JOURNAL, MacNulty, Daniel R., Tallian, Aimee, Stahler, Daniel R., Smith, Douglas W., Sueur, Cédric, Influence of Group Size on the Success of Wolves Hunting Bison, PLoS ONE, 9, 11, 2014-11-12, 10.1371/journal.pone.0112884, 25389760, 4229308, e112884, 2014PLoSO...9k2884M, JOURNAL, Power, R. J., Compion, R. X. Shem, Lion predation on elephants in the Savuti, Chobe National Park, Botswana, African Zoology, 44, 1, 36–44,weblink 10.3377/004.044.0104, 2009, It can also make prey more readily available through strategies like flushing of prey and herding it into a smaller area. For example, when mixed flocks of birds forage, the birds in front flush out insects that are caught by the birds behind. Spinner dolphins form a circle around a school of fish and move inwards, concentrating the fish by a factor of 200.{{harvnb|Beauchamp|2012|pages=7–12}} By hunting socially chimpanzees can catch colobus monkeys that would readily escape an individual hunter, while cooperating Harris hawks can trap rabbits.JOURNAL, Dawson, James W., The cooperative breeding system of the Harris' Hawk in Arizona,weblink The University of Arizona, 1988, 17 November 2017, File:Journal.pone.0112884.g001 a.png|thumb|upright=2.3|center|Wolves, social predators, cooperate to hunt and kill bisonbisonPredators of different species sometimes cooperate to catch prey. In coral reefs, when fish such as the grouper and coral trout spot prey that is inaccessible to them, they signal to giant moray eels, Napoleon wrasses or octopuses. These predators are able to access small crevices and flush out the prey.JOURNAL, Vail, Alexander L., Manica, Andrea, Bshary, Redouan, Referential gestures in fish collaborative hunting, Nature Communications, 23 April 2013, 4, 1, 1765, 10.1038/ncomms2781, 23612306, NEWS, Yong, Ed, Groupers Use Gestures to Recruit Morays For Hunting Team-Ups,weblink 17 September 2018, National Geographic, 24 April 2013, Killer whales have been known to help whalers hunt baleen whales.DVD, Toft, Klaus (Producer), 2007,weblink Killers in Eden (DVD documentary), Australian Broadcasting Corporation, yes,weblink" title="">weblink 2009-08-12, ISBN R-105732-9.Social hunting allows predators to tackle a wider range of prey, but at the risk of competition for the captured food. Solitary predators have more chance of eating what they catch, at the price of increased expenditure of energy to catch it, and increased risk that the prey will escape.JOURNAL, Majer, Marija, Holm, Christina, Lubin, Yael, Bilde, Trine, Cooperative foraging expands dietary niche but does not offset intra-group competition for resources in social spiders, Scientific Reports, 8, 1, 11828, 2018, 10.1038/s41598-018-30199-x, 30087391, 6081395, Ambush predators are often solitary to reduce the risk of becoming prey themselves.WEB, Ambush Predators,weblink Sibley Nature Center, 17 September 2018, en, Of 245 terrestrial carnivores, 177 are solitary; and 35 of the 37 wild cats are solitary,JOURNAL, Elbroch, L. Mark, Quigley, Howard, Social interactions in a solitary carnivore, Current Zoology, 63, 4, 10 July 2016, 357–362, 10.1093/cz/zow080, 29491995, 5804185, including the cougar and cheetah.JOURNAL, Bryce, Caleb M., Wilmers, Christopher C., Williams, Terrie M., Energetics and evasion dynamics of large predators and prey: pumas vs. hounds, PeerJ, 5, 2017, e3701, 10.7717/peerj.3701, 28828280, 5563439, However, the solitary cougar does allow other cougars to share in a kill,NEWS, Quenqua, Douglas, Solitary Pumas Turn Out to Be Mountain Lions Who Lunch,weblink 17 September 2018, The New York Times, 11 October 2017, en, and the coyote can be either solitary or social.BOOK, Flores, Dan, Coyote America : a natural and supernatural history, 2016, Basic Books, 978-0465052998, Other solitary predators include the northern pike,JOURNAL, Stow, Adam, Nyqvist, Marina J., Gozlan, Rodolphe E., Cucherousset, Julien, Britton, J. Robert, Behavioural Syndrome in a Solitary Predator Is Independent of Body Size and Growth Rate, PLoS ONE, 7, 2, 2012, e31619, 10.1371/journal.pone.0031619, 22363687, 3282768, wolf spiders and all the thousands of species of solitary wasps among arthropods,WEB, How do Spiders Hunt?,weblink American Museum of Natural History, 5 September 2018, 25 August 2014, ENCYCLOPEDIA, Weseloh, Ronald M., Encyclopedia of Insects, Hare, J. Daniel, Second, 2009, 837–839, 10.1016/B978-0-12-374144-8.00219-8, 9780123741448, Predation/Predatory Insects, and many microorganisms and zooplankton.JOURNAL, Velicer, Gregory J., Mendes-Soares, Helena, Bacterial predators, Cell, 2007, 19, 2, R55–R56,weblink WEB, Zooplankton,weblink MarineBio Conservation Society, 5 September 2018,


Physical adaptations

Under the pressure of natural selection, predators have evolved a variety of physical adaptations for detecting, catching, killing, and digesting prey. These include speed, agility, stealth, sharp senses, claws, teeth, filters, and suitable digestive systems.WEB, Bar-Yam, Predator-Prey Relationships,weblink New England Complex Systems Institute, 7 September 2018, For detecting prey, predators have well-developed vision, smell, or hearing. Predators as diverse as owls and jumping spiders have forward-facing eyes, providing accurate binocular vision over a relatively narrow field of view, whereas prey animals often have less acute all-round vision. Animals such as foxes can smell their prey even when it is concealed under {{convert|2|ft|cm|-1}} of snow or earth. Many predators have acute hearing, and some such as echolocating bats hunt exclusively by active or passive use of sound.WEB, Predator & Prey: Adaptations,weblink Royal Saskatchewan Museum, 19 April 2018, 2012, Predators including big cats, birds of prey, and ants share powerful jaws, sharp teeth, or claws which they use to seize and kill their prey. Some predators such as snakes and fish-eating birds like herons and cormorants swallow their prey whole; some snakes can unhinge their jaws to allow them to swallow large prey, while fish-eating birds have long spear-like beaks that they use to stab and grip fast-moving and slippery prey. Fish and other predators have developed the ability to crush or open the armoured shells of molluscs.BOOK, Vermeij, Geerat J., Evolution and Escalation: An Ecological History of Life,weblink 1993, Princeton University Press, 978-0-691-00080-0, 11 and passim, Many predators are powerfully built and can catch and kill animals larger than themselves; this applies as much to small predators such as ants and shrews as to big and visibly muscular carnivores like the cougar and lion.JOURNAL, Lafferty, K. D., Kuris, A. M., 2002, Trophic strategies, animal diversity and body size, Trends Ecol. Evol., 17, 11, 507–513, 10.1016/s0169-5347(02)02615-0, JOURNAL, Getz, W. M., Biomass transformation webs provide a unified approach to consumer-resource modelling, Ecology Letters, 14, 2, 113–24, 2011, 21199247, 3032891, 10.1111/j.1461-0248.2010.01566.x, File:Ursus arctos 01 MWNH 145 (cropped).JPG|Skull of brown bear has large pointed canines for killing prey, and self-sharpening carnassial teeth at rear for cutting flesh with a scissor-like actionFile:Myrmecia pilosula specimen mandibles.jpg|Large compound eyes, sensitive antennae, and powerful jaws (mandibles) of jack jumper antFile:Crab spider seizes field digger wasp.jpg|Crab spider, an ambush predator with forward-facing eyes, catching another predator, a field digger waspFile:Hawk eating prey (cropped).jpg|Red-tailed hawk uses sharp hooked claws and beak to kill and tear up its preyFile:GreatBlueHeronTampaFL.JPG|Specialist: a great blue heron with a speared fishFile:MNP Python at Moyer.jpg|Indian python unhinges its jaw to swallow large prey like this chital

Diet and behaviour

{{further|Generalist and specialist species}}{{multiple image|align=right|image1=Peerj-297-fig-5 Platydemus manokwari.png|width1=200|caption1=Platydemus manokwari, a specialist flatworm predator of land snails, attacking a snail|image2=Lioness vs Cape Buffalo (cropped).jpg|width2=212|caption2=Size-selective predation: a lioness attacking a Cape buffalo, roughly twice her weight. Lions can attack much larger prey, including elephants, but do so much less often.}}Predators are often highly specialized in their diet and hunting behaviour; for example, the Eurasian lynx only hunts small ungulates.BOOK, Sidorovich, Vadim, Analysis of vertebrate predator-prey community: Studies within the European Forest zone in terrains with transitional mixed forest in Belarus,weblink 2011, Tesey, 978-985-463-456-2, 426, Others such as leopards are more opportunistic generalists, preying on at least 100 species.BOOK, Angelici, Francesco M., Problematic Wildlife: A Cross-Disciplinary Approach,weblink 2015, Springer, 978-3-319-22246-2, 160, JOURNAL, Hayward, M. W., Henschel, P., O'Brien, J., Hofmeyr, M., Balme, G., Kerley, G.I.H., Prey preferences of the leopard (Panthera pardus), Journal of Zoology, 2006, 270, 2, 298–313, 10.1111/j.1469-7998.2006.00139.x,weblink The specialists may be highly adapted to capturing their preferred prey, whereas generalists may be better able to switch to other prey when a preferred target is scarce. When prey have a clumped (uneven) distribution, the optimal strategy for the predator is predicted to be more specialized as the prey are more conspicuous and can be found more quickly;JOURNAL, Pulliam, H. Ronald, On the Theory of Optimal Diets, The American Naturalist, 108, 959, 1974, 59–74, 10.1086/282885, this appears to be correct for predators of immobile prey, but is doubtful with mobile prey.JOURNAL, Sih, Andrew, Christensen, Bent, Optimal diet theory: when does it work, and when and why does it fail?, Animal Behaviour, 61, 2, 2001, 10.1006/anbe.2000.1592, 379–390, {{anchor|Size-selective predation}}In size-selective predation, predators select prey of a certain size.JOURNAL, Sprules, W. Gary, Effects of Size-Selective Predation and Food Competition on High Altitude Zooplankton Communities, Ecology, 53, 3, 1972, 10.2307/1934223, 1934223, 375–386, Large prey may prove troublesome for a predator, while small prey might prove hard to find and in any case provide less of a reward. This has led to a correlation between the size of predators and their prey. Size may also act as a refuge for large prey. For example, adult elephants are relatively safe from predation by lions, but juveniles are vulnerable.JOURNAL, Owen-Smith, Norman, Mills, M. G. L., Predator-prey size relationships in an African large-mammal food web, Journal of Animal Ecology, 77, 1, 2008, 10.1111/j.1365-2656.2007.01314.x, 18177336, 173–183,

Camouflage and mimicry

{{further|Camouflage|Aggressive mimicry}}{{Double image|right|Snow Leopard in Ladakh( Photo by Tashi Lonchay).jpg|165|Striped anglerfish ( Antennarius striatus ).jpg|212|A camouflaged predator: snow leopard in Ladakh|Striated frogfish uses camouflage and aggressive mimicry in the form of a fishing rod-like lure on its head to attract prey.}}Members of the cat family such as the snow leopard (treeless highlands), tiger (grassy plains, reed swamps), ocelot (forest), fishing cat (waterside thickets), and lion (open plains) are camouflaged with coloration and disruptive patterns suiting their habitats.{{harvnb|Cott|1940|pages=12–13}}In aggressive mimicry, certain predators, including insects and fishes, make use of coloration and behaviour to attract prey. Female Photuris fireflies, for example, copy the light signals of other species, thereby attracting male fireflies, which they capture and eat.JOURNAL, Lloyd J. E., 1965, Aggressive Mimicry in Photuris: Firefly Femmes Fatales, Science (journal), Science, 149, 3684, 653–654, 10.1126/science.149.3684.653, 17747574, 1965Sci...149..653L, Flower mantises are ambush predators; camouflaged as flowers, such as orchids, they attract prey and seize it when it is close enough.BOOK, Forbes, Peter, 2009, Dazzled and Deceived: Mimicry and Camouflage, Yale University Press, 978-0-300-17896-8, 134, Dazzled and Deceived: Mimicry and Camouflage, Frogfishes are extremely well camouflaged, and actively lure their prey to approach using an esca, a bait on the end of a rod-like appendage on the head, which they wave gently to mimic a small animal, gulping the prey in an extremely rapid movement when it is within range.WEB, Bester, Cathleen, Antennarius striatus,weblink Florida Museum, University of Florida, 31 January 2018, 2017-05-05,


{{further|Venom|Evolution of snake venom}}Many smaller predators such as the box jellyfish use venom to subdue their prey,BOOK, Invertebrate Zoology, 7th edition, Ruppert, Edward E., Fox, Richard, S., Barnes, Robert D., 2004, Cengage Learning, 978-81-315-0104-7, 153–154, and venom can also aid in digestion (as is the case for rattlesnakes and some spiders).BOOK, Cetaruk, Edward W., Rattlesnakes and Other Crotalids, Brent, Jeffrey, Critical care toxicology: diagnosis and management of the critically poisoned patient, Elsevier Health Sciences, 2005, 978-0-8151-4387-1, 1075,weblink BOOK, Barceloux, Donald G., Medical Toxicology of Natural Substances: Foods, Fungi, Medicinal Herbs, Plants, and Venomous Animals,weblink 2008, Wiley, 978-0-470-33557-4, 1028, The marbled sea snake that has adapted to egg predation has atrophied venom glands, and the gene for its three finger toxin contains a mutation (the deletion of two nucleotides) that inactives it. These changes are explained by the fact that its prey does not need to be subdued.JOURNAL, Li, Min, Fry, B.G., Kini, R. Manjunatha, Eggs-Only Diet: Its Implications for the Toxin Profile Changes and Ecology of the Marbled Sea Snake (Aipysurus eydouxii), Journal of Molecular Evolution, 60, 1, 2005, 10.1007/s00239-004-0138-0, 15696370, 81–89,


Physiological adaptations to predation include the ability of predatory bacteria to digest the complex peptidoglycan polymer from the cell walls of the bacteria that they prey upon. Carnivorous vertebrates of all five major classes (fishes, amphibians, reptiles, birds, and mammals) have lower relative rates of sugar to amino acid transport than either herbivores or omnivores, presumably because they acquire plenty of amino acids from the animal proteins in their diet.JOURNAL, Karasov, William H., Diamond, Jared M., Interplay between Physiology and Ecology in Digestion, BioScience, 38, 9, 1988, 10.2307/1310825, 602–611, 1310825,

Antipredator adaptations

To counter predation, prey have a great variety of defences. They can try to avoid detection. They can detect predators and warn others of their presence. If detected, they can try to avoid being the target of an attack, for example, by signalling that a chase would be unprofitable or by forming groups. If they become a target, they can try to fend off the attack with defences such as armour, quills, unpalatability or mobbing; and they can escape an attack in progress by startling the predator, shedding body parts such as tails, or simply fleeing.{{harvnb|Caro |2005|pages=v–xi, 4–5}}{{harvnb|Ruxton|Sherratt|Speed|2004|pages=vii–xii}}BOOK, Edmunds, M., Defence in Animals, 1974, Longman, 978-0582441323,

Avoiding detection

Prey can avoid detection by predators with morphological traits and coloration that make them hard to detect. They can also adopt behaviour that avoids predators by, for example, avoiding the times and places where predators forage.{{harvnb|Caro|2005|pages=67–114}}


{{further|Camouflage|Mimicry}}{{multiple image |align=right|image1=Bristol.zoo.dead.leaf.mantis.arp.jpg |width1=190 |caption1=Dead leaf mantis's camouflage makes it less visible to both predators and prey. |image2=Syrphid hoverfly wasp mimic.jpg |width2=157 |caption2=Syrphid hoverfly misdirects predators by mimicking a wasp, but has no sting.}}Prey animals make use of a variety of mechanisms including camouflage and mimicry to misdirect the visual sensory mechanisms of predators, enabling the prey to remain unrecognized for long enough to give it an opportunity to escape. Camouflage delays recognition through coloration, shape, and pattern.JOURNAL, Merilaita, Sami, Scott-Samuel, Nicholas E., Cuthill, Innes C., Innes Cuthill, How camouflage works, Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 1724, 2017-05-22, 10.1098/rstb.2016.0341, 28533458, 5444062, 20160341,weblink Submitted manuscript, Among the many mechanisms of camouflage are countershading and disruptive coloration.{{harvnb|Cott|1940|pages=35–46}} The resemblance can be to the biotic or non-living environment, such as a mantis resembling dead leaves, or to other organisms. In mimicry, an organism has a similar appearance to another species, as in the drone fly, which resembles a bee yet has no sting.{{harvnb|Cott|1940|pages=396–416}}

Behavioural mechanisms

File:BlackWoods.jpg|thumb|left|Black woodpeckerBlack woodpeckerAnimals avoid predators with behavioural mechanisms such as changing their habitats (particularly when raising young), reducing their activity, foraging less and forgoing reproduction when they sense that predators are about.{{harvnb|Caro|2005|pages=112–113}}Eggs and nestlings are particularly vulnerable to predation, so birds take measures to protect their nests. Where birds locate their nests can have a large effect on the frequency of predation. It is lowest for those such as woodpeckers that excavate their own nests and progressively higher for those on the ground, in canopies and in shrubs.{{harvnb|Caro|2005|pages=68–69}} To compensate, shrub nesters must have more broods and shorter nesting times. Birds also choose appropriate habitat (e.g., thick foliage or islands) and avoid forest edges and small habitats. Similarly, some mammals raise their young in dens.By forming groups, prey can often reduce the frequency of encounters with predators because the visibility of a group does not rise in proportion to its size. However, there are exceptions: for example, human fishermen can only detect large shoals of fish with sonar.{{harvnb|Beauchamp|2012|pages=78–80}}

Detecting predators


Prey species use sight, sound and odor to detect predators, and they can be quite discriminating. For example, Belding's ground squirrel can distinguish several aerial and ground predators from each other and from harmless species. Prey also distinguish between the calls of predators and non-predators. Some species can even distinguish between dangerous and harmless predators of the same species. In the northeastern Pacific Ocean, transient killer whales prey on seals, but the local killer whales only eat fish. Seals rapidly exit the water if they hear calls between transients. Prey are also more vigilant if they smell predators.{{harvnb|Caro|2005|pages=13–15}}File:2012-06-09 16-04-22 Switzerland Kanton Graubünden Sagliaz cropped.JPG|thumb|upright|Eurasian jay is constantly alert for predators, warning of their presence with loud alarm callalarm callThe abilities of prey to detect predators do have limits. Belding's ground squirrel cannot distinguish between harriers flying at different heights, although only the low-flying birds are a threat. Wading birds sometimes take flight when there does not appear to be any predator present. Although such false alarms waste energy and lose feeding time, it can be fatal to make the opposite mistake of taking a predator for a harmless animal.{{harvnb|Ruxton|Sherratt|Speed|2004|page=196}}


{{further|Signalling theory}}Prey must remain vigilant, scanning their surroundings for predators. This makes it more difficult to feed and sleep. Groups can provide more eyes, making detection of a predator more likely and reducing the level of vigilance needed by individuals.{{harvnb|Caro|2005|page=149}} Many species, such as Eurasian jays, give alarm calls warning of the presence of a predator; these give other prey of the same or different species an opportunity to escape, and signal to the predator that it has been detected.JOURNAL, Bergstrom, C. T., Lachmann, M., 2001, Alarm calls as costly signals of antipredator vigilance: the watchful babbler game, Animal Behaviour, 61, 3, 535–543, 10.1006/anbe.2000.1636,, JOURNAL, Getty, T., 2002, The discriminating babbler meets the optimal diet hawk, Anim. Behav., 63, 2, 397–402, 10.1006/anbe.2001.1890,

Avoiding an attack

Signalling unprofitability

{{further|Honest signal|Aposematism}}{{multiple image|align=right|image1=Springbok pronk.jpg |caption1=Springbok stotting to signal its ability to escape |width1=150 |image2=Monarch Butterfly Danaus plexippus Feeding Down 3008px (cropped).jpg |width2=245 |caption2=Monarch caterpillar's aposematic coloration signals its toxicity.}}If predator and prey have spotted each other, the prey can signal to the predator to decrease the likelihood of an attack. These honest signals may benefit both the prey and predator, because they save the effort of a fruitless chase.{{harvnb|Ruxton|Sherratt|Speed|2004|pages=70–81}} Signals that appear to deter attacks include stotting, for example by Thomson's gazelle;{{harvnb|Caro|2005|pages=663–684}} push-up displays by lizards; and good singing by skylarks after a pursuit begins. Simply indicating that the predator has been spotted, as a hare does by standing on its hind legs and facing the predator, may sometimes be sufficient. Many prey animals are aposematically coloured or patterned as a warning to predators that they are distasteful or able to defend themselves.{{harvnb|Cott|1940|pages=241–307}}Bowers, M. D., Irene L. Brown, and Darryl Wheye. "Bird Predation as a Selective Agent in a Butterfly Population." Evolution 39.1 (1985): 93-103. Such distastefulness or toxicity is brought about by chemical defences, found in a wide range of prey, especially insects, but the skunk is a dramatic mammalian example.JOURNAL, Berenbaum, M. R., The chemistry of defense: theory and practice., Proceedings of the National Academy of Sciences of the United States of America, 92, 1, 1995-01-03, 7816816, 42807, 2–8, 10.1073/pnas.92.1.2,

Forming groups

By forming groups, prey can reduce attacks by predators. There are several mechanisms that produce this effect. One is dilution, where, in the simplest scenario, if a given predator attacks a group of prey, the chances of a given individual being the target is reduced in proportion to the size of the group. However, it is difficult to separate this effect from other group-related benefits such as increased vigilance and reduced encounter rate.{{harvnb|Beauchamp|2012|pages=83–88}}BOOK, Krause, Jens, Ruxton, Graeme D., Living in groups, Oxford University Press, 9780198508182, 13–15, 2002-10-10, Other advantages include confusing predators such as with motion dazzle, making it more difficult to single out a target.{{harvnb|Caro |2005|pages=275–278}}JOURNAL, Motion camouflage induced by zebra stripes, How, Martin J., Zanker, Johannes M., Zoology, 2014, 163–170, 10.1016/j.zool.2013.10.004, 24368147, 117, 3,

Fending off an attack

{{multiple image|align=right|image1=Erethizon dorsatum du Québec.jpg|width1=200|caption1=The porcupine Erethizon dorsatum combines sharp spines with warning coloration. |image2=Spirama helicina-W-Thailand7810.JPG|width2=200|caption2=When attacked, many moths such as Spirama helicina open their wings to reveal eyespots, in a deimatic or bluffing display.}}Chemical defences include toxins, such as bitter compounds in leaves absorbed by leaf-eating insects, are used to dissuade potential predators.JOURNAL, Brodie, Edmund D., Toxins and venoms, Current Biology, 19, 20, R931–R935, 3 November 2009, 10.1016/j.cub.2009.08.011, 19889364,weblink Mechanical defences include sharp spines, hard shells and tough leathery skin or exoskeletons, all making prey harder to kill.{{harvnb|Ruxton|Sherratt|Speed|2004|pages=54–55}}Some species mob predators cooperatively, reducing the likelihood of attack.JOURNAL, Dominey, Wallace J., 1983, Mobbing in Colonially Nesting Fishes, Especially the Bluegill, Lepomis macrochirus, Copeia, 1983, 4, 1086–1088, 10.2307/1445113, 1445113,

Escaping an attack

{{further|Deimatic behaviour}}When a predator is approaching an individual and attack seems imminent, the prey still has several options. One is to flee, whether by running, jumping, climbing, burrowing or swimming.{{harvnb|Caro|2005|page=413–414}} The prey can gain some time by startling the predator. Many butterflies and moths have eyespots, wing markings that resemble eyes.{{harvnb|Cott|1940|pages=368–389}} When a predator disturbs the insect, it reveals its hind wings in a in a deimatic or bluffing display, startling the predator and giving the insect time to escape.JOURNAL,weblink Behavioral Ecology, Behavioral Ecology, 22, 6, 1326–1331, 26 July 2011, 27 November 2011, Merilaita, Sami, Vallin, Adrian, Kodandaramaiah, Ullasa, Dimitrova, Marina, Ruuskanen, Suvi, Laaksonen, Toni, 10.1093/beheco/arr135, WEB,weblink Deimatic Behavior, Springer, 2012, 31 December 2012, Edmunds, Malcolm, Some other strategies include playing dead and uttering a distress call.


{{further|Coevolution}}File:Big-eared-townsend-fledermaus.jpg|thumb|left|Bats use echolocation to hunt moths at night.]]Predators and prey are natural enemies, and many of their adaptations seem designed to counter each other. For example, bats have sophisticated echolocation systems to detect insects and other prey, and insects have developed a variety of defences including the ability to hear the echolocation calls.{{harvnb|Jacobs|Bastian|2017|page=4}}BOOK, Barbosa, Pedro, Castellanos, Ignacio, Ecology of predator-prey interactions, 2005, Oxford University Press, 9780199874545, 78, Many pursuit predators that run on land, such as wolves, have evolved long limbs in response to the increased speed of their prey.JOURNAL, Janis, C. M., Wilhelm, P. B., 1993, Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars, Journal of Mammalian Evolution, 1, 2, 103–125, 10.1007/bf01041590, Their adaptations have been characterized as an evolutionary arms race, an example of the coevolution of two species.JOURNAL, Dawkins, Richard, Richard Dawkins, Krebs, J. R., John Krebs, Baron Krebs, 1979, Arms races between and within species, Proceedings of the Royal Society B: Biological Sciences, 205, 489–511, In a gene centered view of evolution, the genes of predator and prey can be thought of as competing for the prey's body. However, the "life-dinner" principle of Dawkins and Krebs predicts that this arms race is asymmetric: if a predator fails to catch its prey, it loses its dinner, while if it succeeds, the prey loses its life.File:Micrurus fulviusHolbrookV3P10AA.jpg|thumb|upright=0.7|Eastern coral snake, itself a predator, is venomous enough to kill predators that attack it, so when they avoid it, this behaviour must be inherited, not learnt.]]The metaphor of an arms race implies ever-escalating advances in attack and defence. However, these adaptations come with a cost; for instance, longer legs have an increased risk of breaking,JOURNAL, Abrams, Peter A., Adaptive responses of predators to prey and prey to predators: The failure of the arms-race analogy, Evolution, November 1986, 40, 6, 1229–1247, 10.1111/j.1558-5646.1986.tb05747.x, 28563514, while the specialized tongue of the chameleon, with its ability to act like a projectile, is useless for lapping water, so the chameleon must drink dew off vegetation.JOURNAL, Brodie, Edmund D., Brodie, Edmund D., Predator-Prey Arms Races, BioScience, July 1999, 49, 7, 557–568, 10.2307/1313476, 1313476, The "life-dinner" principle has been criticized on multiple grounds. The extent of the asymmetry in natural selection depends in part on the heritability of the adaptive traits. Also, if a predator loses enough dinners, it too will lose its life. On the other hand, the fitness cost of a given lost dinner is unpredictable, as the predator may quickly find better prey. In addition, most predators are generalists, which reduces the impact of a given prey adaption on a predator. Since specialization is caused by predator-prey coevolution, the rarity of specialists may imply that predator-prey arms races are rare.It is difficult to determine whether given adaptations are truly the result of coevolution, where a prey adaptation gives rise to a predator adaptation that is countered by further adaptation in the prey. An alternative explanation is escalation, where predators are adapting to competitors, their own predators or dangerous prey.JOURNAL, Vermeij, G J, The Evolutionary Interaction Among Species: Selection, Escalation, and Coevolution, Annual Review of Ecology and Systematics, November 1994, 25, 1, 219–236, 10.1146/, Apparent adaptations to predation may also have arisen for other reasons and then been co-opted for attack or defence. In some of the insects preyed on by bats, hearing evolved before bats appeared and was used to hear signals used for territorial defence and mating.{{harvnb|Jacobs|Bastian|2017|page=8}} Their hearing evolved in response to bat predation, but the only clear example of reciprocal adaptation in bats is stealth echolocation.{{harvnb|Jacobs|Bastian|2017|page=107}}A more symmetric arms race may occur when the prey are dangerous, having spines, quills, toxins or venom that can harm the predator. The predator can respond with avoidance, which in turn drives the evolution of mimicry. Avoidance is not necessarily an evolutionary response as it is generally learned from bad experiences with prey. However, when the prey is capable of killing the predator (as can a coral snake with its venom), there is no opportunity for learning and avoidance must be inherited. Predators can also respond to dangerous prey with counter-adaptations. In western North America, the common garter snake has developed a resistance to the toxin in the skin of the rough-skinned newt.

Role in ecosystems

Trophic level

{{further|Trophic level|Apex predator}}File:The mantis which eats a Bee20080829.jpg|thumb|Secondary consumer: a mantis (Tenodera aridifoliaTenodera aridifoliaOne way of classifying predators is by trophic level. Carnivores that feed on herbivores are secondary consumers; their predators are tertiary consumers, and so forth.JOURNAL, Lindeman, Raymond L., The Trophic-Dynamic Aspect of Ecology, Ecology, 23, 4, 1942, 399–417, 10.2307/1930126, 1930126, At the top of this food chain are apex predators such as lions.JOURNAL, Ordiz, Andrés, Bischof, Richard, Swenson, Jon E., Saving large carnivores, but losing the apex predator?, Biological Conservation, 168, 2013, 10.1016/j.biocon.2013.09.024, 128–133, Many predators however eat from multiple levels of the food chain; a carnivore may eat both secondary and tertiary consumers.JOURNAL, Pimm, S. L., Lawton, J. H., 1978, On feeding on more than one trophic level, Nature, 275, 5680, 542–544, 10.1038/275542a0, Predators must also contend with intraguild predation, where other predators kill and eat them. For example, coyotes compete with and sometimes kill gray foxes and bobcats.JOURNAL, Fedriani, J. M., Fuller, T. K., Sauvajot, R. M., York, E. C., 2000, Competition and intraguild predation among three sympatric carnivores, Oecologia, 125, 2, 258–270, 10.1007/s004420000448, 24595837, 2000Oecol.125..258F, 10261/54628,

Biodiversity maintained by apex predation

{{further|Keystone species}}Predators may increase the biodiversity of communities by preventing a single species from becoming dominant. Such predators are known as keystone species and may have a profound influence on the balance of organisms in a particular ecosystem.BOOK, W. J., Bond, 11. Keystone species, Schulze, Ernst-Detlef, Mooney, Harold A., Biodiversity and Ecosystem Function, 2012, Springer, 978-3642580017, 237, Introduction or removal of this predator, or changes in its population density, can have drastic cascading effects on the equilibrium of many other populations in the ecosystem. For example, grazers of a grassland may prevent a single dominant species from taking over.BOOK, Botkin, D., Keller, E., 2003, Environmental Science: Earth as a living planet, John Wiley & Sons, 978-0-471-38914-9, 2, File:Fig. 1 -Riparian willow recovery (26485120926) horiz.jpg|thumb|center|upright=2.8|Riparian willow recovery at Blacktail Creek, Yellowstone National Park, after reintroduction of wolves, the local keystone species and apex predatorapex predatorThe elimination of wolves from Yellowstone National Park had profound impacts on the trophic pyramid. In that area, wolves are both keystone species and apex predators. Without predation, herbivores began to over-graze many woody browse species, affecting the area's plant populations. In addition, wolves often kept animals from grazing near streams, protecting the beavers' food sources. The removal of wolves had a direct effect on the beaver population, as their habitat became territory for grazing. Increased browsing on willows and conifers along Blacktail Creek due to a lack of predation caused channel incision because the reduced beaver population was no longer able to slow the water down and keep the soil in place. The predators were thus demonstrated to be of vital importance in the ecosystem.JOURNAL, Ripple, William J., Beschta, Robert L., Wolves and the Ecology of Fear: Can Predation Risk Structure Ecosystems?, BioScience, 54, 8, 2004, 10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2, 755,

Population dynamics

File:The Canadian field-naturalist (2003) (20330990750).jpg|thumb|upright=1.5|Harvest of Canada lynxCanada lynx{{further|Population dynamics|Lotka-Volterra equations}}In the absence of predators, the population of a species can grow exponentially until it approaches the carrying capacity of the environment.BOOK, Neal, Dick, Introduction to population biology, 2004, Cambridge University Press, 9780521532235, 68–69, Predators limit the growth of prey both by consuming them and by changing their behavior.JOURNAL, Nelson, Erik H., Matthews, Christopher E., Rosenheim, Jay A., Predators Reduce Prey Population Growth by Inducing Changes in Prey Behavior, Ecology, July 2004, 85, 7, 1853–1858, 3450359, 10.1890/03-3109, Increases or decreases in the prey population can also lead to increases or decreases in the number of predators, for example, through an increase in the number of young they bear.Cyclical fluctuations have been seen in populations of predator and prey, often with offsets between the predator and prey cycles. A well-known example is that of the snowshoe hare and lynx. Over a broad span of boreal forests in Alaska and Canada, the hare populations fluctuate in near synchrony with a 10-year period, and the lynx populations fluctuate in response. This was first seen in historical records of animals caught by fur hunters for the Hudson Bay Company over more than a century.JOURNAL, Krebs, Charles J., Boonstra, Rudy, Boutin, Stan, Sinclair, A.R.E., What Drives the 10-year Cycle of Snowshoe Hares?, BioScience, 2001, 51, 1, 25, 10.1641/0006-3568(2001)051[0025:WDTYCO]2.0.CO;2, JOURNAL, Peckarsky, Barbara L., Abrams, Peter A., Bolnick, Daniel I., Dill, Lawrence M., Grabowski, Jonathan H., Luttbeg, Barney, Orrock, John L., Peacor, Scott D., Preisser, Evan L., Schmitz, Oswald J., Trussell, Geoffrey C., Revisiting the classics: considering nonconsumptive effects in textbook examples of predator–prey interactions, Ecology, September 2008, 89, 9, 2416–2425, 10.1890/07-1131.1, WEB, Krebs, Charley, Myers, Judy, The Snowshoe Hare 10-year Cycle – A Cautionary Tale,weblink Ecological rants, University of British Columbia, 2 October 2018, 2014-07-12, WEB, Predators and their prey,weblink BBC Bitesize, BBC, 7 October 2015, File:Lotka-Volterra model (1.1, 0.4, 0.4, 0.1).png|thumb|upright=1.35|left|Predator-prey population cycles in a Lotka‑Volterra model ]]A simple model of a system with one species each of predator and prey, the Lotka–Volterra equations, predicts population cycles.BOOK, Goel, Narendra S., S. C., Maitra, E. W., Montroll, On the Volterra and Other Non-Linear Models of Interacting Populations, Academic Press, 1971, 978-0122874505, However, attempts to reproduce the predictions of this model in the laboratory have often failed; for example, when the protozoan Didinium nasutum is added to a culture containing its prey, Paramecium caudatum, the latter is often driven to extinction.BOOK, Levin, Simon A., Carpenter, Stephen R., Godfray, H. Charles J., Kinzig, Ann P., Loreau, Michel, Losos, Jonathan B., Walker, Brian, Wilcove, David S., The Princeton guide to ecology, 2009, Princeton University Press, 9781400833023, 204–209, The Lotka-Volterra equations rely on several simplifying assumptions, and they are structurally unstable, meaning that any change in the equations can stabilize or destabilize the dynamics.BOOK, Murdoch, William W., Briggs, Cheryl J., Nisbet, Roger M., Consumer-resource dynamics, 2013, Princeton University Press, 9781400847259, 39, BOOK, Nowak, Martin, May, Robert M., Virus Dynamics : Mathematical Principles of Immunology and Virology, 2000, Oxford University Press, 9780191588518, 8, For example, one assumption is that predators have a linear functional response to prey: the rate of kills increases in proportion to the rate of encounters. If this rate is limited by time spent handling each catch, then prey populations can reach densities above which predators cannot control them. Another assumption is that all prey individuals are identical. In reality, predators tend to select young, weak, and ill individuals, leaving prey populations able to regrow.JOURNAL, Genovart, M., Negre, N., Tavecchia, G., Bistuer, A., Parpal, L., Oro, D., 2010, The young, the weak and the sick: evidence of natural selection by predation, PLOS ONE, 5, 3, e9774, 10.1371/journal.pone.0009774, 20333305, 2841644, 2010PLoSO...5.9774G, Many factors can stabilize predator and prey populations.{{harvnb|Rockwood|2009|page=281}} One example is the presence of multiple predators, particularly generalists that are attracted to a given prey species if it is abundant and look elsewhere if it is not.{{harvnb|Rockwood|2009|page=246}} As a result, population cycles are only found in northern temperate and subarctic ecosystems because the food webs are simpler.{{harvnb|Rockwood|2009|pages=271–272}} The snowshoe hare-lynx system is subarctic, but even this involves other predators, including coyotes, goshawks and great horned owls, and the cycle is reinforced by variations in the food available to the hares.{{harvnb|Rockwood|2009|page=272–273}}A range of mathematical models have been developed by relaxing the assumptions made in the Lotka-Volterra model; these variously allow animals to have geographic distributions, or to migrate; to have differences between individuals, such as sexes and an age structure, so that only some individuals reproduce; to live in a varying environment, such as with changing seasons;JOURNAL, Cushing, J. M., Book Reviews {{!, Mathematics in population biology, by Horst R. Thiene |journal=Bulletin of the American Mathematical Society |date=2005 |volume=42 |issue=4 |pages=501–505 |url=|doi=10.1090/S0273-0979-05-01055-4 }}BOOK, Thieme, Horst R., Mathematics in Population Biology,weblink 2003, Princeton University Press, 978-0-691-09291-1, and analysing the interactions of more than just two species at once. Such models predict widely differing and often chaotic predator-prey population dynamics.JOURNAL, Kozlov, Vladimir, Vakulenko, Sergey, On chaos in Lotka–Volterra systems: an analytical approach, Nonlinearity, 26, 8, 3 July 2013, 10.1088/0951-7715/26/8/2299, 2299–2314, The presence of refuge areas, where prey are safe from predators, may enable prey to maintain larger populations but may also destabilize the dynamics.JOURNAL, 10.1016/0040-5809(87)90019-0, Prey refuges and predator-prey stability, Theoretical Population Biology, 31, 1–12, 1987, Sih, Andrew, JOURNAL, 10.1016/0040-5809(86)90004-3, 3961711, The effects of refuges on predator-prey interactions: A reconsideration, Theoretical Population Biology, 29, 1, 38–63, 1986, McNair, James N, JOURNAL, Berryman, Alan A., Hawkins, Bradford A., Hawkins, Bradford A., The refuge as an integrating concept in ecology and evolution, Oikos, 115, 1, 2006, 192–196, 10.1111/j.0030-1299.2006.15188.x, JOURNAL, 10.1016/j.tpb.2009.08.005, 19751753, A predator–prey refuge system: Evolutionary stability in ecological systems, Theoretical Population Biology, 76, 4, 248–57, 2009, Cressman, Ross, Garay, József,

Evolutionary history

{{further|Evolutionary history of life}}Predation predates the rise of commonly recognized carnivores by hundreds of millions (perhaps billions) of years. Predation has evolved repeatedly in different groups of organisms.JOURNAL, Abrams, P. A., 2000, The evolution of predator-prey interactions: theory and evidence, Annual Review of Ecology and Systematics, 31, 79–105, 10.1146/annurev.ecolsys.31.1.79, The rise of eukaryotic cells at around 2.7 Gya, the rise of multicellular organisms at about 2 Gya, and the rise of mobile predators (around 600 Mya - 2 Gya, probably around 1 Gya) have all been attributed to early predatory behavior,and many very early remains show evidence of boreholes or other markings attributed to small predator species. It likely triggered major evolutionary transitions including the arrival of cells, eukaryotes, sexual reproduction, multicellularity, increased size, mobility (including insect flight) and armoured shells and exoskeletons. The earliest predators were microbial organisms, which engulfed or grazed on others. Because the fossil record is poor, these first predators could date back anywhere between 1 and over 2.7 Gya (billion years ago). Predation visibly became important shortly before the Cambrian period—around {{Ma |550}}—as evidenced by the almost simultaneous development of calcification in animals and algae,JOURNAL, Grant, S. W. F., Knoll, A. H., Germs, G. J. B., 1991, Probable Calcified Metaphytes in the Latest Proterozoic Nama Group, Namibia: Origin, Diagenesis, and Implications, Journal of Paleontology, 65, 1, 1–18, 11538648, 1305691, 10.1017/S002233600002014X, and predation-avoiding burrowing. However, predators had been grazing on micro-organisms since at least {{Ma |1000}},BOOK, Bengtson, S., 2002, Origins and early evolution of predation, The fossil record of predation. The Paleontological Society Papers 8, Kowalewski, M., Kelley, P. H., 289–317, The Paleontological Society,weblink JOURNAL, Awramik, S. M., Precambrian columnar stromatolite diversity: Reflection of metazoan appearance, Science, 174, 4011, 825–827, 19 November 1971, 10.1126/science.174.4011.825, 17759393, JOURNAL, Predation defeats competition on the seafloor, Stanley, Steven M., 2008, Paleobiology, 34, 1–21, 10.1666/07026.1, 1, with evidence of selective (rather than random) predation from a similar time.JOURNAL, 10.1042/ETLS20170153, Implications of selective predation on the macroevolution of eukaryotes: Evidence from Arctic Canada, Emerging Topics in Life Sciences, 2, 2, 247–255, 2018, Loron, Corentin C., Rainbird, Robert H., Turner, Elizabeth C., Wilder Greenman, J., Javaux, Emmanuelle J., The fossil record demonstrates a long history of interactions between predators and their prey from the Cambrian period onwards, showing for example that some predators drilled through the shells of bivalve and gastropod molluscs, while others ate these organisms by breaking their shells.BOOK, Kelley, Patricia, Predator--Prey Interactions in the Fossil Record, Springer, 2003, 978-1-4615-0161-9, 840283264, 113–139, 141–176 and passim, Among the Cambrian predators were invertebrates like the anomalocaridids with appendages suitable for grabbing prey, large compound eyes and jaws made of a hard material like that in the exoskeleton of an insect.JOURNAL, Daley, Allison C., Anomalocaridids, Current Biology, 23, 19, R860–R861, 10.1016/j.cub.2013.07.008, 24112975, 2013, Some of the first fish to have jaws were the armoured and mainly predatory placoderms of the Silurian to Devonian periods, one of which, the {{convert|6|m|abbr=on}} Dunkleosteus, is considered the world's first vertebrate "superpredator", preying upon other predators.JOURNAL, Anderson, P. S. L., Westneat, M., A biomechanical model of feeding kinematics for Dunkleosteus terrelli (Arthrodira, Placodermi), Paleobiology, 2009, 35, 2, 251–269, 10.1666/08011.1, JOURNAL, Carr, Robert K., Paleoecology of Dunkleosteus terrelli (Placodermi: Arthrodira), Kirtlandia, 2010, 57,weblink Insects developed the ability to fly in the Early Carboniferous or Late Devonian, enabling them among other things to escape from predators.BOOK, Grimaldi, David, David Grimaldi (entomologist), Engel, Michael S., Michael S. Engel, 2005, Evolution of the Insects, Cambridge University Press, 978-0-521-82149-0, 155–160, Among the largest predators that have ever lived were the theropod dinosaurs such as Tyrannosaurus from the Cretaceous period. They preyed upon herbivorous dinosaurs such as hadrosaurs, ceratopsians and ankylosaurs.JOURNAL, Switeck, Brian, 13 April 2012, When Tyrannosaurus Chomped Sauropods, Journal of Vertebrate Paleontology, 25, 2, 469–472,weblink 24 August 2013, 10.1671/0272-4634(2005)025[0469:TRFTUC]2.0.CO;2, File:Cambrian substrate revolution 02.png|The Cambrian substrate revolution saw life on the sea floor change from minimal burrowing (left) to a diverse burrowing fauna (right), probably to avoid new Cambrian predators.File:Laggania cambria 02.jpg|Mouth of the anomalocaridid Laggania cambria, a Cambrian invertebrate, probably an apex predatorFile:Dunkleosteus terrelli - MUSE.jpg|Dunkleosteus, a Devonian placoderm, perhaps the world's first vertebrate superpredator, reconstructionFile:Meganeura monyi au Museum de Toulouse.jpg|Meganeura monyi, a predatory Carboniferous insect related to dragonflies, could fly to escape terrestrial predators. Its large size, with a wingspan of {{convert|65|cm|in|-1|abbr=on}}, may reflect the lack of vertebrate aerial predators at that time.File:Tyrannosaurus model at NHM.jpg|Tyrannosaurus, a large theropod dinosaur of the Jurassic and Cretaceous, reconstruction

In human society

{{further|Human uses of animals}}File:Bushmen hunters.jpg|thumb|upright|left|San hunter, Botswana]]Humans are to some extent predatory,JOURNAL, Darimont, C. T., Fox, C. H., Bryan, H. M., Reimchen, T. E., The unique ecology of human predators, Science, 349, 6250, 2015-08-20, 10.1126/science.aac4249, 26293961, 858–860, using weapons and tools to fish,BOOK, Otto, Gabriel, von Brandt, Andres, 2005, Blackwell, Fish catching methods of the world, 978-0-85238-280-6, hunt and trap animals.BOOK, Griffin, Emma, Blood Sport: Hunting in Britain Since 1066, 2008, Yale University Press, 978-0300145458, They also use other predatory species such as dogs, cormorants,BOOK, King, Richard J., The Devil's Cormorant: A Natural History,weblink 1 October 2013, University of New Hampshire Press, 978-1-61168-225-0, 9, and falcons to catch prey for food or for sport.BOOK, Glasier, Phillip, Falconry and Hawking, 1998, Batsford, 978-0713484076, Two mid-sized predators, dogs and cats, are the animals most often kept as pets in western societies.JOURNAL, Aegerter, James, Fouracre, David, Smith, Graham C., Olsson, I Anna S, A first estimate of the structure and density of the populations of pet cats and dogs across Great Britain, PLOS ONE, 12, 4, 2017, 10.1371/journal.pone.0174709, 28403172, 5389805, e0174709, WEB, The Humane Society of the United States, U.S. Pet Ownership Statistics,weblink 27 April 2012, Neolithic hunters, including the San of southern Africa, used persistence hunting, a form of pursuit predation where the pursuer may be slower than prey such as a kudu antelope over short distances, but follows it in the midday heat until it is exhausted, a pursuit that can take up to five hours.JOURNAL, Liebenberg, Louis, The relevance of persistence hunting to human evolution, Journal of Human Evolution, 2008, 55, 6, 1156–1159, 10.1016/j.jhevol.2008.07.004, 18760825, WEB,weblink Food For Thought, British Broadcasting Corporation, The Life of Mammals, 31 October 2002,
In biological pest control, predators (and parasitoids) from a pest's natural range are introduced to control populations, at the risk of causing unforeseen problems. Natural predators, provided they do no harm to non-pest species, are an environmentally friendly and sustainable way of reducing damage to crops and an alternative to the use of chemical agents such as pesticides.BOOK, Flint, Maria Louise, Dreistadt, Steve H., Clark, Jack K., Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control, University of California Press, 1998, 978-0-520-21801-7,weblink File:She-wolf suckles Romulus and Remus.jpg|thumb|The Capitoline Wolf suckling Romulus and Remus, the mythical founders of Rome ]]In film, the idea of the predator as a dangerous if humanoid enemy is used in the 1987 science fiction horror action film Predator and its three sequels.BOOK, Johnston, Keith M., 2013, Science Fiction Film: A Critical Introduction, Berg Publishers, 9780857850560, 98,weblink WEB, Newby, Richard, Is 'Predator' Finally Getting a Worthy Sequel?,weblink Hollywood Reporter, 7 September 2018, 13 May 2018, A terrifying predator, a gigantic man-eating great white shark, is central, too, to Steven Spielberg's 1974 thriller Jaws.BOOK, Schatz, Thomas, The New Hollywood, Movie Blockbusters, 25, In: BOOK, Stringer, Julian, Movie Blockbusters, 978-0-415-25608-7, Routledge, 2003, 15–44, In poetry, Ted Hughes's vigorous writings on animals, such as Pike, imaginatively explore a predator's consciousness.NEWS, Davison, Peter, Predators and Prey {{!, Selected Poems, 1957-1994 by Ted Hughes |url= |accessdate=5 October 2018 |work=The New York Times |date=1 December 2002 |quote=Hughes's earliest books contained a bewildering profusion of poems between their covers: ... fish and fowl, beasts of the field and forest, vigorous embodiments of predators and prey. Hughes as a student had taken up anthropology, not literature, and he chose to meditate his way into trancelike states of preconsciousness before committing poems to paper. His poems, early or late, enter into the relations of living creatures; they move in close to animal consciousness: The Thought-Fox, Esther's Tomcat, Pike.}} In mythology and folk fable, predators such as the fox and wolf have mixed reputations.WEB, Wallner, Astrid, The role of predators in Mythology,weblink WaldWissen Information for Forest Management, 5 October 2018, 18 July 2005, translated from Wallner, A. (1998) Die Bedeutung der Raubtiere in der Mythologie: Ergebnisse einer Literaturstudie. - Forsch.bereiches Landsch.ökol. 39: 4-5. The fox was a symbol of fertility in ancient Greece, but a weather demon in northern Europe, and a creature of the devil in early Christianity; the fox is sly, greedy, and cunning in fables from Aesop onwards. The big bad wolf is known to children in tales such as Little Red Riding Hood, but is a demonic figure in the Icelandic Edda sagas, where the wolf Fenrir appears in the apocalyptic ending of the world. In the middle ages, belief spread in werewolves, men transformed into wolves. In ancient Rome, and in ancient Egypt, the wolf was worshipped, the she-wolf appearing in the founding myth of Rome, suckling Romulus and Remus. More recently, in Rudyard Kipling's 1894 The Jungle Book, Mowgli is raised by the wolf pack. Attitudes to large predators in North America, such as wolf, grizzly bear and cougar, have shifted from hostility or ambivalence, accompanied by active persecution, towards positive and protective in the second half of the 20th century.JOURNAL, Kellert, Stephen R., Black, Matthew, Rush, Colleen Reid, Bath, Alistair J., Human Culture and Large Carnivore Conservation in North America, Conservation Biology, 10, 4, 1996, 10.1046/j.1523-1739.1996.10040977.x, 977–990,

See also






{{Commons category|Predation}}
  • BOOK, Beauchamp, Guy, Social predation : how group living benefits predators and prey, 2012, Elsevier, 9780124076549, harv,
  • BOOK, Bell, W. J., Searching Behaviour : the behavioural ecology of finding resources, 2012, Springer Netherlands, 9789401130981, harv,
  • BOOK, Barbosa, P., I., Castellanos, Ecology of predator-prey interactions, 2004, Oxford University Press, 978-0-19-517120-4,
  • BOOK, Caro, Tim, Tim Caro, Antipredator Defenses in Birds and Mammals, 2005, University of Chicago Press, 978-0-226-09436-6, harv,
  • BOOK, Cott, Hugh B., Hugh B. Cott, 1940, Adaptive Coloration in Animals, Methuen, Adaptive Coloration in Animals, harv,
  • BOOK, Curio, E., The ethology of predation, 1976, Springer-Verlag, 978-0-387-07720-8,
  • BOOK, Jacobs, David Steve, Bastian, Anna, Predator-prey interactions : co-evolution between bats and their prey, 2017, Springer, 9783319324920, harv,
  • BOOK, Rockwood, Larry L., Introduction to population ecology, 2009, John Wiley & Sons, 9781444309102, 281, harv,
  • BOOK, Ruxton, Graeme D., Graeme Ruxton, Sherratt, Tom N., Thomas N. Sherratt, Speed, Michael P., Avoiding attack : the evolutionary ecology of crypsis, warning signals, and mimicry, 2004, Oxford University Press, 9780198528593, harv,
{{feeding}}{{Biological interaction-footer}}{{modelling ecosystems}}{{Authority control}}{{good article}}

- content above as imported from Wikipedia
- "Predation" does not exist on GetWiki (yet)
- time: 10:05pm EDT - Fri, May 24 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
M.R.M. Parrott