SUPPORT THE WORK

GetWiki

On Conoids and Spheroids

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
On Conoids and Spheroids
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{Italic title}}On Conoids and Spheroids () is a surviving work by the Greek mathematician and engineer Archimedes ({{circa}} 287 BC – {{circa}} 212 BC). Comprising 32 propositions, the work explores properties of and theorems related to the solids generated by revolution of conic sections about their axes, including paraboloids, hyperboloids, and spheroids.{{harvcolnb| Coolidge | 1945 | p=7}} The principal result of the work is comparing the volume of any segment cut off by a plane with the volume of a cone with equal base and axis.{{harvcolnb| 1911 Encyclopedia Britannica, Volume 2|p=369}}The work is addressed to Dositheus of Pelusium.

Footnotes

{{reflist}}

References

  • WEB, 1911 Encyclopedia Britannica, Volume 2,weblink {{sfnref, 1911 Encyclopedia Britannica, Volume 2, | access-date=2018-12-31}}
  • BOOK, Coolidge, J.L., A history of the conic sections and quadric surfaces, Dover Publications, 1945,weblink harv, 2018-12-16,

External links

{{Archimedes}}{{math-stub}}

- content above as imported from Wikipedia
- "On Conoids and Spheroids" does not exist on GetWiki (yet)
- time: 7:15am EST - Fri, Feb 22 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
GETWIKI 18 AUG 2014
Wikinfo
Culture
CONNECT