SUPPORT THE WORK

GetWiki

John Archibald Wheeler

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
John Archibald Wheeler
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{short description|American theoretical physicist}}{{good article}}







factoids

| birth_place = Jacksonville, Florida, United States
| death_date = {{BirthDeathAge||1911|7|9|2008|4|13}}
| death_place = Hightstown, New Jersey, United States
| residence = United States
| citizenship =
| nationality = American
| ethnicity =
| fields = Physics
| workplaces = {hide}Plainlist|


{edih}
| alma_mater = Johns Hopkins University (Ph.D.)
| doctoral_advisor = Karl Herzfeld
| thesis_title = Theory of the dispersion and absorption of helium
| thesis_year = 1933
| thesis_url =weblink
| academic_advisor =
| doctoral_students = {{Plainlist|


}}
| notable_students =
| known_for = {hide}Plainlist|


{edih}
| influences =
| influenced =
| awards = {{Plainlist|


}}
| signature =
| footnotes =|spouse = Janette Hegner}}
John Archibald Wheeler (July 9, 1911 – April 13, 2008) was an American theoretical physicist. He was largely responsible for reviving interest in general relativity in the United States after World War II. Wheeler also worked with Niels Bohr in explaining the basic principles behind nuclear fission. Together with Gregory Breit, Wheeler developed the concept of the Breit–Wheeler process. He is best known for linking the term "black hole" to objects with gravitational collapse already predicted early in the 20th century, for coining the terms "quantum foam", "neutron moderator", "wormhole" and "it from bit", and for hypothesizing the "one-electron universe".Wheeler earned his doctorate at Johns Hopkins University under the supervision of Karl Herzfeld, and studied under Breit and Bohr on a National Research Council fellowship. In 1939 he collaborated with Bohr to write a series of papers using the liquid drop model to explain the mechanism of fission. During World War II, he worked with the Manhattan Project's Metallurgical Laboratory in Chicago, where he helped design nuclear reactors, and then at the Hanford Site in Richland, Washington, where he helped DuPont build them. He returned to Princeton after the war ended, but returned to government service to help design and build the hydrogen bomb in the early 1950s.For most of his career, Wheeler was a professor of physics at Princeton University, which he joined in 1938, remaining until his retirement in 1976. At Princeton he supervised 46 PhDs, more than any other professor in the Princeton physics department.

Early life and education

Wheeler was born in Jacksonville, Florida on July 9, 1911 to librarians Joseph Lewis Wheeler and Mabel Archibald (Archie) Wheeler.{{sfn|Wheeler|Ford|1998|pp=64, 71}} He was the oldest of four children, having two younger brothers, Joseph and Robert, and a younger sister, Mary. Joseph earned a Ph.D. from Brown University and a Master of Library Science from Columbia University. Robert earned a Ph.D. in geology from Harvard University and worked as a geologist for oil companies and at colleges. Mary studied library science at the University of Denver and became a librarian.{{sfn|Wheeler|Ford|1998|pp=71–75}} They grew up in Youngstown, Ohio, but spent a year in 1921 to 1922 on a farm in Benson, Vermont, where Wheeler attended a one-room school. After they returned to Youngstown he attended Rayen High School.{{sfn|Wheeler|Ford|1998|pp=78–80}}After graduating from the Baltimore City College high school in 1926,{{sfn|Leonhart|1939|p=287}} Wheeler entered Johns Hopkins University with a scholarship from the state of Maryland.{{sfn|Wheeler|Ford|1998|p=85}} He published his first scientific paper in 1930, as part of a summer job at the National Bureau of Standards.{{sfn|Wheeler|Ford|1998|p=97}} He earned his doctorate in 1933. His dissertation research work, carried out under the supervision of Karl Herzfeld, was on the "Theory of the Dispersion and Absorption of Helium". He received a National Research Council fellowship, which he used to study under Gregory Breit at New York University in 1933 and 1934,{{sfn|Wheeler|Ford|1998|pp=105–107}} and then in Copenhagen under Niels Bohr in 1934 and 1935.{{sfn|Wheeler|Ford|1998|pp=123–127}} In a 1934 paper, Breit and Wheeler introduced the Breit–Wheeler process, a mechanism by which photons can be potentially transformed into matter in the form of electron-positron pairs.{{sfn|Wheeler|Ford|1998|p=85}}JOURNAL
, Collision of Two Light Quanta
, Breit, G., Gregory Breit
, Wheeler, John
, Physical Review
, 46
, 12
, 1087–1091
, December 1934
, American Physical Society
, 10.1103/PhysRev.46.1087, 1934PhRv...46.1087B,

Early career

The University of North Carolina at Chapel Hill made Wheeler an associate professor in 1937, but he wanted to be able work more closely with the experts in particle physics.{{sfn|Wheeler|Ford|1998|pp=151–152}} He turned down an offer in 1938 of an associate professorship at Johns Hopkins University in favor of an assistant professorship at Princeton University. Although it was a lesser position, he felt that Princeton, which was building up its physics department, was a better career choice.WEB,weblink Interview with Dr. John Wheeler – Session VI, Kenneth W., Ford, February 4, 1994, American Institute of Physics, dead,weblink" title="web.archive.org/web/20130202034349weblink">weblink February 2, 2013, He remained a member of the faculty there until 1976.NEWS,weblink Leading physicist John Wheeler dies at age 96, News at Princeton, April 14, 2008, Kitta, MacPherson, dead,weblink April 13, 2016, In a 1937 paper "On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure", Wheeler introduced the S-matrix – short for scattering matrix – "a unitary matrix of coefficients connecting the asymptotic behavior of an arbitrary particular solution [of the integral equations] with that of solutions of a standard form."{{sfn|Mehra|Rechenberg|1982|p=990}}JOURNAL
, On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure
, Wheeler, John A.
, Physical Review
, 52
, 11
, 1107–1122
, December 1937
, American Physical Society
, 10.1103/PhysRev.52.1107, 1937PhRv...52.1107W
, Werner Heisenberg subsequently developed the idea of the S-matrix in the 1940s. Due to the problematic divergences present in quantum field theory at that time, Heisenberg was motivated to isolate the essential features of the theory that would not be affected by future changes as the theory developed. In doing so he was led to introduce a unitary "characteristic" S-matrix, which became an important tool in particle physics.{{sfn|Mehra|Rechenberg|1982|p=990}}
Wheeler did not develop the S-matrix, but joined Edward Teller in examining Bohr's liquid drop model of the atomic nucleus.JOURNAL
, On the Rotation of the Atomic Nucleus
, Teller, E., Edward Teller
, Wheeler, J. A.
, Physical Review
, 53
, 10
, 778–789
, May 1938
, American Physical Society
, 10.1103/PhysRev.53.778
American Physical Society in New York in 1938. Wheeler's Chapel Hill graduate student Katharine Way also presented a paper, which she followed up in a subsequent article, detailing how the liquid drop model was unstable under certain conditions. Due to a limitation of the liquid drop model, they all missed the opportunity to predict nuclear fission.{{sfn>Mehra1982|pp=990–991}}JOURNAL
, The Liquid-Drop Model and Nuclear Moments
, Way, Katharine, Katharine Way
, Physical Review
, 55
, 10
, 963–965
, May 1939
, American Physical Society
, 10.1103/PhysRev.55.963, 1939PhRv...55..963W
, The news of Lise Meitner and Otto Frisch's discovery of fission was brought to America by Bohr in 1939. Bohr told Leon Rosenfeld, who informed Wheeler.
Bohr and Wheeler set to work applying the liquid drop model to explain the mechanism of nuclear fission.JOURNAL
, The Mechanism of Nuclear Fission
, Bohr, Niels
, Wheeler, John Archibald
, Niels Bohr
, Phys. Rev.
, 56, 5, 426–450
, September 1939
, American Physical Society
, 10.1103/PhysRev.56.426
George Placzek asked Bohr why uranium seemed to fission with both very fast and very slow neutrons. Walking to a meeting with Wheeler, Bohr had an insight that the fission at low energies was due to the uranium-235 isotope, while at high energies it was mainly due to the far more abundant uranium-238 isotope.{{sfn>Wheeler1998|pp=27–28}} They co-wrote two more papers on fission.JOURNAL
, The Fission of Protactinium
, Bohr, Niels
, Wheeler, John Archibald
, Niels Bohr
, Physical Review
, 56, 10, 1065–1066
, November 1939
, American Physical Society
, 10.1103/PhysRev.56.1065.2, 1939PhRv...56.1065B, JOURNAL
, Bohr, Niels
, Wheeler, John Archibald
, Resumés of Recent Research
, Niels Bohr
, Journal of Applied Physics
, 11, 1, 70–71
, 0021-8979, 10.1063/1.1712708
, January 1940
Physical Review on September 1, 1939, the day Invasion of Poland>Germany invaded Poland, starting World War II in Europe.{{sfnFordp=31}}Considering the notion that positrons were electrons that were traveling backwards in time, he came up in 1940 with his one-electron universe postulate: that there was in fact only one electron, bouncing back and forth in time. His graduate student, Richard Feynman, found this hard to believe, but the idea that positrons were electrons traveling backwards in time intrigued him and Feynman incorporated the notion of the reversibility of time into his Feynman diagrams.{{sfn|Wheeler|Ford|1998|pp=117–118}}

Nuclear weapons

Manhattan Project

Soon after the Japanese bombing of Pearl Harbor brought the United States into World War II, Wheeler accepted a request from Arthur Compton to join the Manhattan Project's Metallurgical Laboratory at the University of Chicago. He moved there in January 1942,{{sfn|Wheeler|Ford|1998|p=31}} joining Eugene Wigner's group, which was studying nuclear reactor design.{{sfn|Wheeler|Ford|1998|p=39}} He co-wrote a paper with Robert F. Christy on "Chain Reaction of Pure Fissionable Materials in Solution", which was important in the plutonium purification process.WEB,weblink Interview with Dr. John Wheeler – Session VII, Kenneth W., Ford, February 14, 1994, American Institute of Physics, dead,weblink" title="web.archive.org/web/20130201171058weblink">weblink February 1, 2013, It would not be declassified until December 1955.WEB, Christy, R. F., Robert F. Christy, J. A., Wheeler, Chain Reaction of Pure Fissionable Materials in Solution, Metallurgical Laboratory, January 1, 1943,weblink He gave the neutron moderator its name, replacing the term "slower downer" used by Enrico Fermi.{{sfn|Wheeler|Ford|1998|p=40}}{{sfn|Weinberg|1994|p=14}}File:B Reactor Tube Loader.JPG|thumb|right|Loading tubes of the Hanford B ReactorB ReactorAfter the United States Army Corps of Engineers took over the Manhattan Project, it gave responsibility for the detailed design and construction of the reactors to DuPont.{{sfn|Weinberg|1994|pp=27–30}} Wheeler became part of the DuPont design staff.{{sfn|Jones|1985|p=203}} He worked closely with its engineers, commuting between Chicago and Wilmington, Delaware, where DuPont had its headquarters. He moved his family to Wilmington in March 1943.{{sfn|Wheeler|Ford|1998|pp=46–48}} DuPont's task was not just to build nuclear reactors, but an entire plutonium production complex at the Hanford Site in Washington.{{sfn|Jones|1985|pp=210–211}} As work progressed, Wheeler relocated his family again in July 1944, this time to Richland, Washington, where he worked in the scientific buildings known as the 300 area.{{sfn|Wheeler|Ford|1998|pp=46–48}}Even before the Hanford Site started up the B Reactor, the first of its three reactors, on September 15, 1944, Wheeler had been concerned that some nuclear fission products might turn out to be nuclear poisons, the accumulation of which would impede the ongoing nuclear chain reaction by absorbing many of the thermal neutrons that were needed to continue a chain reaction.{{sfn|Rhodes|1986|pp=558–60}} In an April 1942 report, he predicted that this would reduce the reactivity by less than one percent so long as no fission product had a neutron capture cross section of more than 100,000 barns.{{sfn|Wheeler|Ford|1998|p=56}} After the reactor unexpectedly shut down, and then just as unexpectedly restarted about fifteen hours later, he suspected iodine-135, with a half life of 6.6 hours, and its daughter product, xenon-135, which has a half life of 9.2 hours. Xenon-135 turned out to have a neutron capture cross-section of well over 2 million barns. The problem was corrected by adding additional fuel rods to burn out the poison.{{sfn|Wheeler|Ford|1998|p=61}}Wheeler had a personal reason for working on the Manhattan Project. His brother Joe, fighting in Italy, sent him a postcard with a simple message: "Hurry up".JOURNAL, Nautilus,weblink Haunted by His Brother, He Revolutionized Physics, Amanda, Gefter, January 16, 2014, 9, It was already too late: Joe was killed in October 1944. "Here we were," Wheeler later wrote, "so close to creating a nuclear weapon to end the war. I couldn't stop thinking then, and haven't stopped thinking since, that the war could have been over in October 1944."{{sfn|Wheeler|Ford|1998|p=61}} Joe left a widow and baby daughter, Mary Jo, who later married physicist James Hartle.{{sfn|Wheeler|Ford|1998|p=75}}

Hydrogen bomb

In August 1945 Wheeler and his family returned to Princeton, where he resumed his academic career.{{sfn|Wheeler|Ford|1998|pp=161–162}} Working with Feynman, he explored the possibility of physics with particles, but not fields, and carried out theoretical studies of the muon with Jayme Tiomno,{{sfn|Wheeler|Ford|1998|pp=171–177}} resulting in a series of papers on the topic,JOURNAL
, Mechanism of Capture of Slow Mesons
, Wheeler, John
, Physical Review
, 71
, 5
, 320–321
, March 1947
, American Physical Society
, 10.1103/PhysRev.71.320, 1947PhRv...71..320W, JOURNAL
, Charge-Exchange Reaction of the μ-Meson with the Nucleus
, Tiomno, Jayme Tiomno
, J. A., Wheeler
, Reviews of Modern Physics
, 21
, 1
, 153–165
, January 1949
, American Physical Society
, 10.1103/RevModPhys.21.153, 1949RvMP...21..153T, including a 1949 paper in which Tiomno and Wheeler introduced the "Tiomno Triangle", which related different forms of radioactive decay.JOURNAL
, J., Tiomno, Jayme Tiomno
, J. A., Wheeler
, Energy Spectrum of Electrons from Meson Decay
, Reviews of Modern Physics
, 21, 1, 144–152, January 1949
, 10.1103/RevModPhys.21.144, 1949RvMP...21..144T, He also suggested the use of muons as a nuclear probe. This paper, written and privately circulated in 1949 but not published until 1953,JOURNAL
, Mu Meson as Nuclear Probe Particle
, Wheeler, John
, Physical Review
, 92
, 3
, 812–816
, November 1953
, American Physical Society
, 10.1103/PhysRev.92.812
cosmic rays, and Wheeler became the founder and first director of Princeton's Cosmic Rays Laboratory, which received a substantial grant of $375,000 from the Office of Naval Research in 1948.{{sfn>Wheeler1998Guggenheim Fellowship in 1946,HTTP://WWW.GF.ORG/SEARCH?SEARCH=JOHN+A.+WHEELER PUBLISHER=JOHN SIMON GUGGENHEIM MEMORIAL FOUNDATION Wheeler1998|p=183}}File:Ivy Mike Sausage device.jpg|thumb|left|The "Sausage" device of Ivy Mike nuclear test on Enewetak Atoll. The Sausage was the first true hydrogen bombhydrogen bombThe 1949 detonation of Joe-1 by the Soviet Union prompted an all-out effort by the United States, led by Teller, to develop the more powerful hydrogen bomb in response. Henry D. Smyth, Wheeler's department head at Princeton, asked him to join the effort. Most physicists were, like Wheeler, trying to re-establish careers interrupted by the war and were reluctant to face more disruption. Others had moral objections.{{sfn|Wheeler|Ford|1998|pp=188–189}} Those who agreed to participate included Emil Konopinski, Marshall Rosenbluth, Lothar Nordheim and Charles Critchfield, but there was also now a body of experienced weapons physicists at the Los Alamos Laboratory, led by Norris Bradbury.{{sfn|Rhodes|1995|pp=416–417}}{{sfn|Wheeler|Ford|1998|p=202}} Wheeler agreed to go to Los Alamos after a conversation with Bohr.{{sfn|Wheeler|Ford|1998|pp=188–189}} Two of his graduate students from Princeton, Ken Ford and John Toll, joined him there.{{sfn|Wheeler|Ford|1998|pp=193–194}}At Los Alamos, Wheeler and his family moved into the house on "Bathtub Row" that had been occupied by Robert Oppenheimer and his family during the war.{{sfn|Wheeler|Ford|1998|p=196}} In 1950 there was no practical design for a hydrogen bomb. Calculations by Stan Ulam and others showed that Teller's "Classical Super" would not work. Teller and Wheeler created a new design known as "Alarm Clock", but it was not a true thermonuclear weapon. Not until January 1951 did Ulam come up with a workable design.{{sfn|Rhodes|1995|pp=457–464}}In 1951 Wheeler obtained permission from Bradbury to set up a branch office of the Los Alamos laboratory at Princeton, known as Project Matterhorn, which had two parts. Matterhorn S (for stellarator, another name coined by Wheeler), under Lyman Spitzer, investigated nuclear fusion as a power source. Matterhorn B (for bomb), under Wheeler, engaged in nuclear weapons research. Senior scientists remained uninterested and aloof from the project, so he staffed it with young graduate and post-doctoral students.{{sfn|Wheeler|Ford|1998|pp=218–220}} In January 1953 he was involved in a security breach when he lost a highly classified paper on lithium-6 and the hydrogen bomb design during an overnight train trip. This resulted in Wheeler being given an official reprimand.{{sfn|Wheeler|Ford|1998|pp=285–286}} Matterhorn B's efforts were crowned by the success of the Ivy Mike nuclear test at Enewetak Atoll in the Pacific, on November 1, 1953,JOURNAL, Physics Today, John Wheeler's work on particles, nuclei, and weapons, Kenneth W., Ford, Kenneth W. Ford, 62, 4, 29–33, April 2009, 10.1063/1.3120893, 2009PhT....62d..29F, {{sfn|Wheeler|Ford|1998|pp=218–220}} which Wheeler witnessed. The yield of the Ivy Mike "Sausage" device was reckoned at {{convert|10.4|MtonTNT|lk=on}}, about 30 percent higher than Matterhorn B had estimated.{{sfn|Wheeler|Ford|1998|pp=224–225}} Matterhorn B was discontinued, but Matterhorn S endures as the Princeton Plasma Physics Laboratory.{{sfn|Wheeler|Ford|1998|pp=218–220}}

Later career in academia

After concluding his Matterhorn Project work, Wheeler resumed his academic career. In a 1955 paper, he theoretically investigated the geon, an electromagnetic or gravitational wave that is held together in a confined region by the attraction of its own field. He coined the name as a contraction of "gravitational electromagnetic entity."JOURNAL, Geons, 1955PhRv...97..511W, Wheeler, J. A., Physical Review, January 1955, 97, 2, 511–536, 10.1103/PhysRev.97.511, He found that the smallest geon was a toroid the size of the Sun, but millions of times heavier.{{sfn|Wheeler|Ford|1998|p=237}}

Geometrodynamics

During the 1950s, Wheeler formulated geometrodynamics, a program of physical and ontological reduction of every physical phenomenon, such as gravitation and electromagnetism, to the geometrical properties of a curved space-time. His research on the subject was published in 1957 and 1961.JOURNAL, J. Wheeler, Geometrodynamics and the Problem of Motion, Reviews of Modern Physics, 1961, 44, 63–78, 10.1103/RevModPhys.33.63, 1, 1961RvMP...33...63W, JOURNAL, J. Wheeler, On the nature of quantum geometrodynamics, Ann. Phys., 1957, 2, 6, 604–614, 10.1016/0003-4916(57)90050-7, 1957AnPhy...2..604W, Wheeler envisaged the fabric of the universe as a chaotic sub-atomic realm of quantum fluctuations, which he called "quantum foam".{{sfn|Wheeler|Ford|1998|p=248}}

General relativity

General relativity had been considered a less respectable field of physics, being detached from experiment. Wheeler was a key figure in the revival of the subject, leading the school at Princeton University, while Dennis William Sciama and Yakov Borisovich Zel'dovich developed the subject at Cambridge University and the University of Moscow, respectively. Wheeler and his students made substantial contributions to the field during the Golden Age of General Relativity.{{sfn|Hawking|Gibbons|Shellard|Rankin|2003|pp=80–88}}While working on mathematical extensions to Einstein's general relativity in 1957, Wheeler introduced the concept and word wormhole to describe hypothetical "tunnels" in space-time. Bohr asked if they were stable and further research by Wheeler determined that they are not.{{sfn|Wheeler|Ford|1998|pp=239–241}}JOURNAL, Misner, Charles W., Charles Misner, John A., Wheeler, Classical Physics as Geometry, Annals of Physics, 2, 6, December 1957, 525–603, 0003-4916, 10.1016/0003-4916(57)90050-7, 1957AnPhy...2..604W, His work in general relativity included the theory of gravitational collapse. He used the term black hole in 1967 during a talk he gave at the NASA Goddard Institute of Space Studies (GISS).{{sfn|Wheeler|Ford|1998|p=296}}Wheeler said the term was suggested to him during a lecture when a member of the audience was tired of hearing Wheeler say "gravitationally completely collapsed object." However, the term Black Hole had been used four years earlier at an astrophysics conference in Dallas, Texas as science writer Marcia Bartusiak reported in a talk at the 50th anniversary of the Texas Symposium on Relativistic Astrophysics. American astrophysicist and publisher Hong-Yee Chiu, said he remembered a seminar in Princeton University, perhaps as early as 1960, when the physicist Robert H. Dicke spoke about gravitationally collapsed objects as "like the Black Hole of Calcutta."MAGAZINE, Tom, Siegfried, December 23, 2013,weblink July 6, 2019, Science News, 50 years later, it’s hard to say who named black holes, Wheeler was also a pioneer in the field of quantum gravity due to his development, with Bryce DeWitt, of the Wheeler–DeWitt equation in 1967.JOURNAL, DeWitt, B. S., Bryce DeWitt, Quantum Theory of Gravity. I. The Canonical Theory, Physical Review, Phys. Rev., 160, 5, 1113–1148, 1967, 10.1103/PhysRev.160.1113, 1967PhRv..160.1113D, Stephen Hawking later described Wheeler and DeWitt's work as the equation governing the "wave function of the Universe".JOURNAL
, Wave function of the Universe
, Hartle, J., James Hartle
, Hawking, S., Stephen Hawking
, Physical Review D
, 28
, 12
, 2960–2975
, December 1983
, American Physical Society
, 10.1103/PhysRevD.28.2960
, 1983PhRvD..28.2960H,

Quantum information

Wheeler left Princeton University in 1976 at the age of 65. He was appointed as the director of the Center for Theoretical Physics at the University of Texas at Austin in 1976 and remained in the position until 1986, when he retired and became a professor emeritus.WEB,weblink Report of the Memorial Resolution Committee for John A. Wheeler, December 6, 2014, Misner, Thorne and Wojciech Zurek, all former students of Wheeler, wrote that:
}}
Wheeler's delayed choice experiment is actually several thought experiments in quantum physics that he proposed, with the most prominent among them appearing in 1978 and 1984. These experiments are attempts to decide whether light somehow "senses" the experimental apparatus in the double-slit experiment it will travel through and adjusts its behavior to fit by assuming the appropriate determinate state for it, or whether light remains in an indeterminate state, neither wave nor particle, and responds to the "questions" asked of it by responding in either a wave-consistent manner or a particle-consistent manner depending on the experimental arrangements that ask these "questions".{{sfn|Wheeler|Ford|1998|pp=334–339}}Wheeler's graduate students included Katharine Way, Richard Feynman, David Hill, Bei-Lok Hu, Kip Thorne, Jacob Bekenstein, John R. Klauder, William Unruh, Robert M. Wald, Arthur Wightman, Charles Misner, Max Tegmark and Hugh Everett.{{MathGenealogy|id=31332}}{{sfn|Saunders|2010|page=6}} Wheeler gave a high priority to teaching, and continued to teach freshman and sophomore physics, saying that the young minds were the most important. With Kent Harrison, Kip Thorne and Masami Wakano, Wheeler wrote Gravitation Theory and Gravitational Collapse (1965). This led to the voluminous general relativity textbook Gravitation (1973), co-written with Misner and Thorne. Its timely appearance during the golden age of general relativity and its comprehensiveness made it an influential relativity textbook for a generation.{{sfn|Wheeler|Ford|1998|pp=232–234}} Wheeler teamed up with Edwin F. Taylor to write Spacetime Physics (1966) and Scouting Black Holes (1996). At Princeton he supervised 46 PhDs, more than any other professor in the Princeton physics department.JOURNAL, Physics Today, John Wheeler's Mentorship: An Enduring Legacy, Terry M., Christensen, 62, 4, 55–59, April 2009, 10.1063/1.3120897, 2009PhT....62d..55C,

Teaching

Alluding to Wheeler's "mass without mass", the festschrift honoring his 60th birthday was titled Magic Without Magic: John Archibald Wheeler: A Collection of Essays in Honor of his Sixtieth Birthday (1972). His writing style could also attract parodies, including one by "John Archibald Wyler" that was affectionately published by a relativity journal.JOURNAL, John Archibald, Wyler,weblink Rasputin, Science, and the Transmogrification of Destiny, General Relativity and Gravitation, 5, 2, 1974, 175–182, 1974GReGr...5..175W, 10.1007/BF00763499, {{sfn|Misner|2010|p=22}}

Participatory Anthropic Principle

Wheeler speculated that reality is created by observers in the universe. "How does something arise from nothing?", he asked about the existence of space and time.{{sfn|Ford|2006|p=2}} He also coined the term "Participatory Anthropic Principle" (PAP), a version of a Strong Anthropic Principle.JOURNAL, Nesteruk, Alexei V., Journal of Siberian Federal University, 6,, 3, 2013, 415–437, A "Participatory Universe" of J. A. Wheeler as an Intentional Correlate of Embodied Subjects and an Example of Purposiveness in Physics, 1304.2277, In 1990, Wheeler suggested that information is fundamental to the physics of the universe. According to this "it from bit" doctrine, all things physical are information-theoretic in origin:
}}
In developing the Participatory Anthropic Principle (PAP), an (Interpretations of quantum mechanics#von Neumann.2FWigner interpretation: consciousness causes the collapse|interpretation of quantum mechanics), Wheeler used a variant on Twenty Questions, called Negative Twenty Questions, to show how the questions we choose to ask about the universe may dictate the answers we get. In this variant, the respondent does not choose or decide upon any particular or definite object beforehand, but only on a pattern of "Yes" or "No" answers. This variant requires the respondent to provide a consistent set of answers to successive questions, so that each answer can be viewed as logically compatible with all the previous answers. In this way, successive questions narrow the options until the questioner settles upon a definite object. Wheeler's theory was that, in an analogous manner, consciousness may play some role in bringing the universe into existence.{{sfn|Gribbin|Gribbin|Gribbin|2000|pp=270-271}}From a transcript of a radio interview on "The Anthropic Universe":}}

Opposition to parapsychology

In 1979, Wheeler spoke to the American Association for the Advancement of Science (AAAS), asking it to expel parapsychology, which had been admitted ten years earlier at the request of Margaret Mead. He called it a pseudoscience,{{sfn|Gardner||1981|pp=185ff}} saying he did not oppose earnest research into the questions, but he thought the "air of legitimacy" of being an AAAS-Affiliate should be reserved until convincing tests of at least a few so-called psi effects could be demonstrated.{{sfn|Wheeler|Ford|1998|pp=342–343}} In the question and answer period following his presentation "Not consciousness, but the distinction between the probe and the probed, as central to the elemental quantum act of observation", Wheeler incorrectly stated that J. B. Rhine had committed fraud as a student, for which he apologized in a subsequent letter to the journal Science.JOURNAL, Wheeler, J. A., 1979, Parapsychology – A correction, Science (journal), Science, 205, 4402, 144, 10.1126/science.205.4402.144-b, His request was turned down and the Parapsychological Association remained a member of the AAAS.{{sfn|Wheeler|Ford|1998|pp=342–343}}

Personal life

For 72 years, Wheeler was married to Janette Hegner, a teacher and social worker. They became engaged on their third date, but agreed to defer marriage until after he returned from Europe. They were married on June 10, 1935, five days after his return.{{sfn|Wheeler|Ford|1998|pp=121–122}} Jobs were hard to come by during the Great Depression, but Arthur Ruark offered Wheeler a position as an assistant professor at the University of North Carolina at Chapel Hill, at an annual salary of $2,300, which was less than the $2,400 Janette was offered to teach at the Rye Country Day School.{{sfn|Wheeler|Ford|1998|pp=144–145}} They had three children: Letitia, James English and Alison Wheeler.Wheeler and Hegner were founding members of the Unitarian Church of Princeton, and she initiated the Friends of the Princeton Public Library. In their later years, Hegner accompanied him on sabbaticals in France, Los Alamos, New Mexico, the Netherlands, and Japan.WEB, Obituaries,weblink www.towntopics.com, January 8, 2016, Hegner died in October 2007 at the age of 99.WEB, Princeton University – Leading physicist John Wheeler dies at age 96,weblink www.princeton.edu, January 8, 2016, dead,weblink" title="web.archive.org/web/20160112165247weblink">weblink January 12, 2016, WEB, Obituary: John Wheeler,weblink the Guardian, January 8, 2016, Michael, Carlson,

Death and legacy

Wheeler won numerous prizes and awards, including the Enrico Fermi Award in 1968, the Franklin Medal in 1969, the Einstein Prize in 1969, the National Medal of Science in 1971, the Niels Bohr International Gold Medal in 1982, the Oersted Medal in 1983, the J. Robert Oppenheimer Memorial Prize in 1984 and the Wolf Foundation Prize in 1997. He was a member of the American Philosophical Society, the Royal Academy, the Accademia Nazionale dei Lincei, and the Century Association. He received honorary degrees from 18 different institutions. In 2001, Princeton used a $3 million gift to establish the John Archibald Wheeler/Battelle Professorship in Physics. After his death, the University of Texas named the John A. Wheeler Lecture Hall in his honor.On April 13, 2008, Wheeler died of pneumonia at the age of 96 in Hightstown, New Jersey.NEWS, Dennis, Overbye, Dennis Overbye, John A. Wheeler, Physicist Who Coined the Term 'Black Hole', Is Dead at 96., April 14, 2008,weblink The New York Times, John A. Wheeler, a visionary physicist and teacher who helped invent the theory of nuclear fission, gave black holes their name and argued about the nature of reality with Albert Einstein and Niels Bohr, died Sunday morning at his home at Meadow Lakes in Hightstown, N.J. He was 96., April 15, 2008,

Bibliography

  • BOOK, Wheeler, John Archibald, Geometrodynamics, Academic Press, 1962, New York, 1317194,
  • BOOK, Harrison, B. Kent, Kip S. Thorne, Masami Wakano, John Archibald Wheeler, Gravitation Theory and Gravitational Collapse, The University of Chicago Press, 1965, Chicago, 65017293,
  • BOOK, Misner, Charles W., Kip S. Thorne, John Archibald Wheeler, Gravitation (book), Gravitation, W. H. Freeman, San Francisco, September 1973, 0-7167-0344-0,
  • BOOK, Wheeler, John Archibald, Some Men and Moments in the History of Nuclear Physics: The Interplay of Colleagues and Motivations, 1979, Minneapolis, University of Minnesota Press, 6025422,
  • BOOK, Wheeler, John Archibald, A Journey Into Gravity and Spacetime, New York, 1990, -Scientific American Library, W.H. Freeman, 0-7167-6034-7,
  • BOOK, Taylor, Edwin F., Edwin F. Taylor, Wheeler, John Archibald, Spacetime Physics: Introduction to Special Relativity', 1992, W. H. Freeman, New York, 0-7167-2327-1,weblink
  • BOOK, Wheeler, John Archibald, At Home in the Universe, 1994, American Institute of Physics, New York, 1-56396-500-3,
  • BOOK, Gravitation and Inertia, 1995, Ignazio, Ciufolini, Ignazio Ciufolini, John Archibald, Wheeler, Princeton University Press, Princeton, New Jersey, 0-691-03323-4,
  • BOOK, Wheeler, John Archibald, Geons, Black Holes, and Quantum Foam: A Life in Physics, 1998, New York, W.W. Norton & Co, 0-393-04642-7,weblink
  • BOOK, Taylor, Edwin F., Edwin F. Taylor, Wheeler, John Archibald, Exploring Black Holes: Introduction to General Relativity, 2000, Addison Wesley, 0-201-38423-X,

Notes

{{Reflist|30em}}

References

  • JOURNAL, Ford, Kenneth, Kenneth W. Ford,weblink Update on John Archibald Wheeler, Princeton Physics News, 2, 1, Winter 2006, harv, dead,weblink 2014-11-06,
  • BOOK, Gardner, Martin, Martin Gardner, Science: Good, Bad, and Bogus, Prometheus Books, Buffalo, New York, 1981, 0-87975-144-4, harv,
  • BOOK, Gribbin, John, Gribbin, Mary, Gribbin, Jonathan, Q is for Quantum: An Encyclopedia of Particle Physics, 2000, Simon and Schuster, New York, 9780684863153, 43411619, harv,
  • BOOK, Hawking, Stephen, Stephen Hawking, G. W., Gibbons, Gary Gibbons, E. P. S., Shellard, S. J., Rankin, 2003, The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking's 60th birthday, Cambridge, U.K., Cambridge University Press., 978-0-521-82081-3, 51324005, harv,
  • BOOK, Jones, Vincent, Manhattan: The Army and the Atomic Bomb, United States Army Center of Military History, Washington, D.C., 1985,weblink 8 June 2013, 10913875, harv,
  • BOOK, Leonhart, James Chancellor, One Hundred Years of the Baltimore City College, H. G. Roebuck & Son, 1939, Baltimore, harv,
  • BOOK, Mehra, Jagdish, Helmut, Rechenberg, The Historical Development of Quantum Theory, Springer, New York, 1982, 978-0-387-95086-0, 7944997, harv,
  • BOOK, Misner, Charles W., Charles W. Misner, John Wheeler and the Reccertification of General Relativity as True Physics, 2010, General Relativity and John Archibald Wheeler, Ignazio, Ciufolini and, Richard A., Matzner, New York, Springer, 9789048137350, 10.1007/978-90-481-3735-0_2, harv,
  • BOOK, Rhodes, Richard, Richard Rhodes, The Making of the Atomic Bomb, New York, Simon & Schuster, 1986, 0-671-44133-7, 13793436, harv,
  • BOOK, Rhodes, Richard, Richard Rhodes, 1995, Dark Sun: The Making of the Hydrogen Bomb, Simon & Schuster, New York, 0-684-80400-X, 32509950, harv,weblink
  • BOOK, Saunders, Simon, Many Worlds? Everett, Quantum Theory, and Reality, 2010, Oxford University Press, New York, 978-0-19-956056-1, harv,
  • BOOK, Weinberg, Alvin, The First Nuclear Era: The Life and Times of a Technological Fixer, New York, AIP Press, 1994, 1-56396-358-2, harv,
  • BOOK, Wheeler, John A., Information, physics, quantum: The search for links, Wojciech Hubert, Zurek, Complexity, Entropy, and the Physics of Information, Redwood City, California, 1990, Addison-Wesley, 978-0-201-51509-1, 21482771, harv,
  • BOOK, Wheeler, John Archibald, Ford, Kenneth, Kenneth W. Ford, Geons, Black Holes, and Quantum Foam: A Life in Physics, 1998, New York, W.W. Norton & Co, 0-393-04642-7, harv,weblink
  • BOOK, Wheeler, John Archibald, Cosmology, Physics and Philosophy, 2nd, 1987, 0-387-90581-2, Springer Verlag, New York, harv,

External links

{{Commons category}}{{Wikinews|Physicist John Wheeler dies at age 96}} {{Wolf Prize in Physics}}{{Winners of the National Medal of Science}}{{Presidents of the American Physical Society}}{{FRS 1995}}{{Manhattan Project}}{{relativity}}{{Authority control}}


- content above as imported from Wikipedia
- "John Archibald Wheeler" does not exist on GetWiki (yet)
- time: 5:20am EDT - Tue, Sep 24 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 JUL 2019
Eastern Philosophy
History of Philosophy
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
CONNECT