SUPPORT THE WORK

GetWiki

IEEE 802.11

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
IEEE 802.11
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
File:Linksys-Wireless-G-Router.jpg|thumb|This Linksys WRT54GS Wi-Fi router operates on the 2.4 GHz "G" standard, capable of transmitting 54 megabits per second.]]File:Netgear-Nighthawk-AC1900-WiFi-Router.jpg|thumb|For comparison, this NetgearNetgearIEEE 802.11 is part of the IEEE 802 set of LAN protocols, and specifies the set of media access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) Wi-Fi computer communication in various frequencies, including but not limited to 2.4, 5, and 60 GHz frequency bands.They are the world's most widely used wireless computer networking standards, used in most home and office networks to allow laptops, printers, and smartphones to talk to each other and access the Internet without connecting wires. They are created and maintained by the Institute of Electrical and Electronics Engineers (IEEE) LAN/MAN Standards Committee (IEEE 802). The base version of the standard was released in 1997, and has had subsequent amendments. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand. While each amendment is officially revoked when it is incorporated in the latest version of the standard, the corporate world tends to market to the revisions because they concisely denote capabilities of their products. As a result, in the marketplace, each revision tends to become its own standard.The protocols are typically used in conjunction with IEEE 802.2, and are designed to interwork seamlessly with Ethernet, and are very often used to carry Internet Protocol traffic.Although IEEE 802.11 specifications list channels that might be used, the radio frequency spectrum availability allowed varies significantly by regulatory domain.

General description

The 802.11 family consists of a series of half-duplex over-the-air modulation techniques that use the same basic protocol. The 802.11 protocol family employ carrier-sense multiple access with collision avoidance whereby equipment listens to a channel for other users (including non 802.11 users) before transmitting each packet.802.11-1997 was the first wireless networking standard in the family, but 802.11b was the first widely accepted one, followed by 802.11a, 802.11g, 802.11n, and 802.11ac. Other standards in the family (c–f, h, j) are service amendments that are used to extend the current scope of the existing standard, which may also include corrections to a previous specification.WEB, IEEE-SA Standards Board Operations Manual, IEEE-SA,weblink 2015-09-13, no,weblink" title="web.archive.org/web/20150906183258weblink">weblink 2015-09-06, 802.11b and 802.11g use the 2.4 GHz ISM band, operating in the United States under Part 15 of the U.S. Federal Communications Commission Rules and Regulations; 802.11n can also use that band. Because of this choice of frequency band, 802.11b/g/n equipment may occasionally suffer interference in the 2.4 GHz band from microwave ovens, cordless telephones, and Bluetooth devices etc. 802.11b and 802.11g control their interference and susceptibility to interference by using direct-sequence spread spectrum (DSSS) and orthogonal frequency-division multiplexing (OFDM) signaling methods, respectively.802.11a uses the 5 GHz U-NII band, which, for much of the world, offers at least 23 non-overlapping 20 MHz-wide channels rather than the 2.4 GHz ISM frequency band offering only three non-overlapping 20 MHz-wide channels, where other adjacent channels overlap—see list of WLAN channels. Better or worse performance with higher or lower frequencies (channels) may be realized, depending on the environment. 802.11n can use either the 2.4 or 5 GHz band; 802.11ac uses only the 5 GHz band.The segment of the radio frequency spectrum used by 802.11 varies between countries. In the US, 802.11a and 802.11g devices may be operated without a license, as allowed in Part 15 of the FCC Rules and Regulations. Frequencies used by channels one through six of 802.11b and 802.11g fall within the 2.4 GHz amateur radio band. Licensed amateur radio operators may operate 802.11b/g devices under Part 97 of the FCC Rules and Regulations, allowing increased power output but not commercial content or encryption.WEB, ARRLWeb: Part 97 - Amateur Radio Service, American Radio Relay League,weblink 2010-09-27, no,weblink" title="web.archive.org/web/20100309001406weblink">weblink 2010-03-09, In 2018, the Wi-Fi Alliance began using a consumer-friendly generation numbering scheme for the publicly used 802.11 protocols. Wi-Fi generations 1–6 refer to the 802.11b, 802.11a, 802.11g, 802.11n, 802.11ac, and 802.11ax protocols, in that order.WEB,weblink Wi-Fi CERTIFIED 6 {{!, Wi-Fi Alliance|website=www.wi-fi.org|access-date=2019-05-02}}WEB,weblink Wi-Fi now has version numbers, and Wi-Fi 6 comes out next year, Kastrenakes, Jacob, 2018-10-03, The Verge, 2019-05-02,

History

802.11 technology has its origins in a 1985 ruling by the U.S. Federal Communications Commission that released the ISM band for unlicensed use.Wolter Lemstra , Vic Hayes , John Groenewegen , The Innovation Journey of Wi-Fi: The Road To Global Success, Cambridge University Press, 2010, {{ISBN|0-521-19971-9}}In 1991 NCR Corporation/AT&T (now Nokia Labs and LSI Corporation) invented a precursor to 802.11 in Nieuwegein, the Netherlands. The inventors initially intended to use the technology for cashier systems. The first wireless products were brought to the market under the name WaveLAN with raw data rates of 1 Mbit/s and 2 Mbit/s.Vic Hayes, who held the chair of IEEE 802.11 for 10 years, and has been called the "father of Wi-Fi", was involved in designing the initial 802.11b and 802.11a standards within the IEEE.WEB,weblink Vic Hayes - Wireless Vision, Ben Charny, December 6, 2002, CNET, 2011-04-30, yes,weblink" title="web.archive.org/web/20120826164642weblink">weblink 2012-08-26, In 1999, the Wi-Fi Alliance was formed as a trade association to hold the Wi-Fi trademark under which most products are sold.WEB, Wi-Fi Alliance: Organization, Official industry association web site,weblink August 23, 2011, no,weblink" title="web.archive.org/web/20090903004711weblink">weblink September 3, 2009, The major commercial breakthrough came with Apple Inc. adopting Wi-Fi for their iBook series of laptops in 1999. It was the first mass consumer product to offer Wi-Fi network connectivity, which was then branded by Apple as AirPort.NEWS,weblink Apple Offers iMac's Laptop Offspring, the iBook, Steve Lohr, The New York Times, July 22, 1999, WEB,weblink STATE OF THE ART; Not Born To Be Wired, Peter H. Lewis, The New York Times, November 25, 1999, WEB,weblink How a meeting with Steve Jobs in 1998 gave birth to Wi-Fi, Claus Hetting, August 19, 2018, Wi-Fi Now, One year later IBM followed with its ThinkPad 1300 series in 2000.WEB,weblink Innovate or die: How ThinkPad cracked the code to the wireless world,

Protocol

{{802.11 network standards|state=uncollapsed}}

802.11-1997 (802.11 legacy)

The original version of the standard IEEE 802.11 was released in 1997 and clarified in 1999, but is now obsolete. It specified two net bit rates of 1 or 2 megabits per second (Mbit/s), plus forward error correction code. It specified three alternative physical layer technologies: diffuse infrared operating at 1 Mbit/s; frequency-hopping spread spectrum operating at 1 Mbit/s or 2 Mbit/s; and direct-sequence spread spectrum operating at 1 Mbit/s or 2 Mbit/s. The latter two radio technologies used microwave transmission over the Industrial Scientific Medical frequency band at 2.4 GHz. Some earlier WLAN technologies used lower frequencies, such as the U.S. 900 MHz ISM band.Legacy 802.11 with direct-sequence spread spectrum was rapidly supplanted and popularized by 802.11b.

802.11a (OFDM waveform)

802.11a, published in 1999, uses the same data link layer protocol and frame format as the original standard, but an OFDM based air interface (physical layer). It operates in the 5 GHz band with a maximum net data rate of 54 Mbit/s, plus error correction code, which yields realistic net achievable throughput in the mid-20 Mbit/s.WEB,weblink Wireless throughput, 2011-09-29, yes,weblink" title="web.archive.org/web/20111103014005weblink">weblink 2011-11-03, It has seen widespread worldwide implementation, particularly within the corporate workspace.Since the 2.4 GHz band is heavily used to the point of being crowded, using the relatively unused 5 GHz band gives 802.11a a significant advantage. However, this high carrier frequency also brings a disadvantage: the effective overall range of 802.11a is less than that of 802.11b/g. In theory, 802.11a signals are absorbed more readily by walls and other solid objects in their path due to their smaller wavelength, and, as a result, cannot penetrate as far as those of 802.11b. In practice, 802.11b typically has a higher range at low speeds (802.11b will reduce speed to 5.5 Mbit/s or even 1 Mbit/s at low signal strengths). 802.11a also suffers from interference,JOURNAL, Angelakis, V., Papadakis, S., Siris, V.A., Traganitis, A., Adjacent channel interference in 802.11a is harmful: Testbed validation of a simple quantification model, Communications Magazine, 49, 3, 160–166, IEEE, March 2011,weblink 0163-6804, 10.1109/MCOM.2011.5723815, {{inconsistent citations, }} but locally there may be fewer signals to interfere with, resulting in less interference and better throughput.

802.11b

The 802.11b standard has a maximum raw data rate of 11 Mbit/s, and uses the same media access method defined in the original standard. 802.11b products appeared on the market in early 2000, since 802.11b is a direct extension of the modulation technique defined in the original standard. The dramatic increase in throughput of 802.11b (compared to the original standard) along with simultaneous substantial price reductions led to the rapid acceptance of 802.11b as the definitive wireless LAN technology.Devices using 802.11b experience interference from other products operating in the 2.4 GHz band. Devices operating in the 2.4 GHz range include microwave ovens, Bluetooth devices, baby monitors, cordless telephones, and some amateur radio equipment. As unlicensed intentional radiators in this ISM band, they must not interfere with and must tolerate interference from primary or secondary allocations (users) of this band, such as amateur radio.

802.11g

In June 2003, a third modulation standard was ratified: 802.11g. This works in the 2.4 GHz band (like 802.11b), but uses the same OFDM based transmission scheme as 802.11a. It operates at a maximum physical layer bit rate of 54 Mbit/s exclusive of forward error correction codes, or about 22 Mbit/s average throughput.BOOK, Wireless Networking in the Developing World: A practical guide to planning and building low-cost telecommunications infrastructure, Hacker Friendly LLC, 2nd, 425, 2007,weblink no,weblink" title="web.archive.org/web/20081006075431weblink">weblink 2008-10-06, page 14 802.11g hardware is fully backward compatible with 802.11b hardware, and therefore is encumbered with legacy issues that reduce throughput by ~21% when compared to 802.11a.{{Citation needed|date=January 2011}}The then-proposed 802.11g standard was rapidly adopted in the market starting in January 2003, well before ratification, due to the desire for higher data rates as well as reductions in manufacturing costs. By summer 2003, most dual-band 802.11a/b products became dual-band/tri-mode, supporting a and b/g in a single mobile adapter card or access point. Details of making b and g work well together occupied much of the lingering technical process; in an 802.11g network, however, activity of an 802.11b participant will reduce the data rate of the overall 802.11g network.Like 802.11b, 802.11g devices suffer interference from other products operating in the 2.4 GHz band, for example wireless keyboards.

802.11-2007

In 2003, task group TGma was authorized to "roll up" many of the amendments to the 1999 version of the 802.11 standard. REVma or 802.11ma, as it was called, created a single document that merged 8 amendments (802.11a, b, d, e, g, h, i, j) with the base standard. Upon approval on March 8, 2007, 802.11REVma was renamed to the then-current base standard IEEE 802.11-2007.IEEE 802.11-2007

802.11n

802.11n is an amendment that improves upon the previous 802.11 standards by adding multiple-input multiple-output antennas (MIMO). 802.11n operates on both the 2.4 GHz and the 5 GHz bands. Support for 5 GHz bands is optional. Its net data rate ranges from 54 Mbit/s to 600 Mbit/s. The IEEE has approved the amendment, and it was published in October 2009.WEB,weblink IEEE-SA - News & Events, IEEE Standards Association, 2012-05-24, no,weblink" title="web.archive.org/web/20100726095111weblink">weblink 2010-07-26, BOOK, IEEE-SA, IEEE 802.11n-2009—Amendment 5: Enhancements for Higher Throughput, 29 October 2009, 10.1109/IEEESTD.2009.5307322, 978-0-7381-6046-7, Prior to the final ratification, enterprises were already migrating to 802.11n networks based on the Wi-Fi Alliance's certification of products conforming to a 2007 draft of the 802.11n proposal.

802.11-2012

In May 2007, task group TGmb was authorized to "roll up" many of the amendments to the 2007 version of the 802.11 standard.WEB,weblink IEEE P802 - Task Group M Status, no,weblink" title="web.archive.org/web/20170314140109weblink">weblink 2017-03-14, REVmb or 802.11mb, as it was called, created a single document that merged ten amendments (802.11k, r, y, n, w, p, z, v, u, s) with the 2007 base standard. In addition much cleanup was done, including a reordering of many of the clauses.WEB,weblink Why did 802.11-2012 renumber clauses?, Matthew Gast, Aerohive Networks, 2012-11-17, yes,weblink" title="web.archive.org/web/20121111042610weblink">weblink 2012-11-11, Upon publication on March 29, 2012, the new standard was referred to as IEEE 802.11-2012.

802.11ac

{{Update|section|date=June 2019}} IEEE 802.11ac-2013 is an amendment to IEEE 802.11, published in December 2013, that builds on 802.11n.WEB,weblink New IEEE 802.11acâ„¢ Specification Driven by Evolving Market Need for Higher, Multi-User Throughput in Wireless LANs, Kelly, Vivian, IEEE, 2014-01-07, 2014-01-11, no,weblink" title="web.archive.org/web/20140112011626weblink">weblink 2014-01-12, Changes compared to 802.11n include wider channels (80 or 160 MHz versus 40 MHz) in the 5 GHz band, more spatial streams (up to eight versus four), higher-order modulation (up to 256-QAM vs. 64-QAM), and the addition of Multi-user MIMO (MU-MIMO). As of October 2013, high-end implementations support 80 MHz channels, three spatial streams, and 256-QAM, yielding a data rate of up to 433.3 Mbit/s per spatial stream, 1300 Mbit/s total, in 80 MHz channels in the 5 GHz band.WEB,weblink AC1900: Innovation or 3D Wi-Fi?, Higgins, Tim, SmallNetBuilder, 2013-10-08, 2013-12-31, no,weblink" title="web.archive.org/web/20131205010026weblink">weblink 2013-12-05, Vendors have announced plans to release so-called "Wave 2" devices with support for 160 MHz channels, four spatial streams, and MU-MIMO in 2014 and 2015.WEB,weblink Quantenna chipset to anchor speedy first 'Wave 2' Asus router, Hachman, Mark, 2014-01-05, 2014-01-11, PCWorld, no,weblink" title="web.archive.org/web/20140111200358weblink">weblink 2014-01-11, WEB,weblink What Wave of 802.11ac is Right for You?, Aruba Networks, 2012-12-02, 2014-01-11, Gilby, Christian, no,weblink" title="web.archive.org/web/20140112010245weblink">weblink 2014-01-12, WEB,weblink Cisco will ride the 802.11ac Wave2, Rubino, Bill, 2013-05-07, 2014-01-11, Cisco Systems, no,weblink" title="web.archive.org/web/20140105110126weblink">weblink 2014-01-05,

802.11ad

{{Update|section|date=November 2013}} IEEE 802.11ad is an amendment that defines a new physical layer for 802.11 networks to operate in the 60 GHz millimeter wave spectrum. This frequency band has significantly different propagation characteristics than the 2.4 GHz and 5 GHz bands where Wi-Fi networks operate. Products implementing the 802.11ad standard are being brought to market under the WiGig brand name. The certification program is now being developed by the Wi-Fi Alliance instead of the now defunct Wireless Gigabit Alliance.WEB,weblink Wi-Fi Alliance gobbles up WiGig; plans to certify devices this year, Kevin, Fitchard, Gigaom, 8 January 2016, no,weblink 5 March 2016, The peak transmission rate of 802.11ad is 7 Gbit/s.WEB,weblink IEEE Standard Association - IEEE Get Program, IEEE Standards Association, 8 January 2016, no,weblink" title="web.archive.org/web/20151224035601weblink">weblink 24 December 2015, IEEE 802.11ad is a protocol used for very high data rates (about 8 Gbit/s) and for short range communication (about 1-10 meters).WEB,weblink IEEE 802.11ad, Devopedia, 5 January 2019, TP-Link announced the world's first 802.11ad router in January 2016.WEB, TP-Link unveils world's first 802.11ad WiGig router,weblink Ars Technica, 2016-01-16, no,weblink" title="web.archive.org/web/20160116165329weblink">weblink 2016-01-16,

802.11af

IEEE 802.11af, also referred to as "White-Fi" and "Super Wi-Fi",MAGAZINE, Comparison of 802.11af and 802.22 standards – physical layer and cognitive functionality,weblink June 2012, 2013-12-29, Lekomtcev, Demain, Maršálek, Roman, Elektrorevue, 3, 2, 1213-1539, is an amendment, approved in February 2014, that allows WLAN operation in TV white space spectrum in the VHF and UHF bands between 54 and 790 MHz.WEB, IEEE 802.11af: A Standard for TV White Space Spectrum Sharing,weblink IEEE, Flores, Adriana B., Guerra, Ryan E., Knightly, Edward W., Ecclesine, Peter, Pandey, Santosh, October 2013, 2013-12-29, yes,weblink" title="web.archive.org/web/20131230232954weblink">weblink 2013-12-30, It uses cognitive radio technology to transmit on unused TV channels, with the standard taking measures to limit interference for primary users, such as analog TV, digital TV, and wireless microphones. Access points and stations determine their position using a satellite positioning system such as GPS, and use the Internet to query a geolocation database (GDB) provided by a regional regulatory agency to discover what frequency channels are available for use at a given time and position. The physical layer uses OFDM and is based on 802.11ac.WEB,weblink Dongguk, Lim, TVWS Regulation and Standardization (IEEE 802.11af), 2013-05-23, 2013-12-29, {{dead link|date=February 2018 |bot=KAP03 |fix-attempted=yes }} The propagation path loss as well as the attenuation by materials such as brick and concrete is lower in the UHF and VHF bands than in the 2.4 and 5 GHz bands, which increases the possible range. The frequency channels are 6 to 8 MHz wide, depending on the regulatory domain. Up to four channels may be bonded in either one or two contiguous blocks. MIMO operation is possible with up to four streams used for either space–time block code (STBC) or multi-user (MU) operation. The achievable data rate per spatial stream is 26.7 Mbit/s for 6 and 7 MHz channels, and 35.6 Mbit/s for 8 MHz channels. With four spatial streams and four bonded channels, the maximum data rate is 426.7 Mbit/s for 6 and 7 MHz channels and 568.9 Mbit/s for 8 MHz channels.

802.11-2016

IEEE 802.11-2016 which was known as IEEE 802.11 REVmc,WEB,weblink 802.11-2016, 12 August 2017, Wireless Training & Solutions, 5 January 2019, , is a revision based on IEEE 802.11-2012, incorporating 5 amendments (11ae, 11aa, 11ad, 11ac, 11af). In addition, existing MAC and PHY functions have been enhanced and obsolete features were removed or marked for removal. Some clauses and annexes have been renumbered.WEB,weblink IEEE 802.11-2016, 2017-03-25, no,weblink" title="web.archive.org/web/20170308153100weblink">weblink 2017-03-08,

802.11ah

IEEE 802.11ah, published in 2017,WEB,weblink 802.11ah-2016 - IEEE Standard for Information technology--Telecommunications and information exchange between systems - Local and metropolitan area networks--Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHz License Exempt Operation, 2018-06-09, defines a WLAN system operating at sub-1 GHz license-exempt bands. Due to the favorable propagation characteristics of the low frequency spectra, 802.11ah can provide improved transmission range compared with the conventional 802.11 WLANs operating in the 2.4 GHz and 5 GHz bands. 802.11ah can be used for various purposes including large scale sensor networks,WEB,weblink Churchill, Sam, 802.11ah: WiFi Standard for 900MHz, 2013-08-30, 2014-02-11, DailyWireless, no,weblink" title="web.archive.org/web/20140210073727weblink">weblink 2014-02-10, extended range hotspot, and outdoor Wi-Fi for cellular traffic offloading, whereas the available bandwidth is relatively narrow. The protocol intends consumption to be competitive with low power Bluetooth, at a much wider range.WEB,weblink There's a new type of Wi-Fi, and it's designed to connect your smart home, 2016-01-04, The Verge, 2015-01-04, no,weblink" title="web.archive.org/web/20160104142935weblink">weblink 2016-01-04,

802.11ai

IEEE 802.11ai is an amendment to the 802.11 standard that added new mechanisms for a faster initial link setup time.WEB,weblink IEEE 802.11, The Working Group Setting the Standards for Wireless LANs, 29 June 2017, no,weblink" title="web.archive.org/web/20170701094002weblink">weblink 1 July 2017,

802.11aj

IEEE 802.11aj is a rebanding of 802.11ad for use in the 45 GHz unlicensed spectrum available in some regions of the world (specifically China).Alternatively known as China Milli-Meter Wave (CMMW).

802.11aq

IEEE 802.11aq is an amendment to the 802.11 standard that will enable pre-association discovery of services. This extends some of the mechanisms in 802.11u that enabled device discovery to further discover the services running on a device, or provided by a network.

802.11ax

IEEE 802.11ax (aka "Wi-Fi 6") is the successor to 802.11ac, and will increase the efficiency of WLAN networks. Currently in development, this project has the goal of providing 4x the throughput of 802.11ac at the user layer,REPORT,weblink 802.11 HEW SG Proposed PAR, Aboul-Magd, Osama, 2014, no,weblink 2014-04-07, having just 37% higher nominal data rates at the PHY layer.ARTICLE,weblink A Tutorial on IEEE 802.11ax High Efficiency WLANs, E.Khorov, A. Kiryanov, A. Lyakhov, G. Bianchi, IEEE, 2018, in press, 10.1109/COMST.2018.2871099, no,

802.11ay

{{Update|section|date=March 2015}} IEEE 802.11ay is a standard that is being developed. It is an amendment that defines a new physical layer for 802.11 networks to operate in the 60 GHz millimeter wave spectrum. It will be an extension of the existing 11ad, aimed to extend the throughput, range and use-cases. The main use-cases include: indoor operation, out-door back-haul and short range communications. The peak transmission rate of 802.11ay is 20 Gbit/s.WEB, P802.11ay,weblink IEEE, 19 August 2015, 1, This amendment defines standardized modifications to both the IEEE 802.11 physical layers (PHY) and the IEEE 802.11 medium access control layer (MAC) that enables at least one mode of operation capable of supporting a maximum throughput of at least 20 gigabits per second (measured at the MAC data service access point), while maintaining or improving the power efficiency per station., no,weblink 15 October 2016, The main extensions include: channel bonding (2, 3 and 4), MIMO and higher modulation schemes.

802.11be

IEEE 802.11be Extremely High Throughput (EHT) is the potential next amendment of the 802.11 IEEE standard.WEB,weblink IEEE P802.11 EXTREMELY HIGH THROUGHPUT Study Group, www.ieee802.org, 2019-05-20, It will build upon 802.11ax, focusing on WLAN indoor and outdoor operation with stationary and pedestrian speeds in the 2.4, 5 and 6 GHz frequency bands. Being the potential successor of Wi-Fi 6, the Wi-Fi Alliance will most likely certify it as Wi-Fi 7.

Common misunderstandings about achievable throughput

File:Throughputenvelope80211g.png|thumb|upright=1.5|Graphical representation of Wi-Fi application specific (UDP) performance envelope 2.4 GHz band, with 802.11g. 1 Mbps = 1 Mbit/sMbit/sAcross all variations of 802.11, maximum achievable throughputs are given either based on measurements under ideal conditions or in the layer-2 data rates. However, this does not apply to typical deployments in which data is being transferred between two endpoints, of which at least one is typically connected to a wired infrastructure and the other endpoint is connected to an infrastructure via a wireless link.File:ThroughputEnvelope11n.png|thumb|upright=1.5|Graphical representation of Wi-Fi application specific (UDP) performance envelope 2.4 GHz band, with 802.11n with 40MHz]]This means that, typically, data frames pass an 802.11 (WLAN) medium, and are being converted to 802.3 (Ethernet) or vice versa. Due to the difference in the frame (header) lengths of these two media, the application's packet size determines the speed of the data transfer. This means applications that use small packets (e.g., VoIP) create dataflows with high-overhead traffic (i.e., a low goodput). Other factors that contribute to the overall application data rate are the speed with which the application transmits the packets (i.e., the data rate) and, of course, the energy with which the wireless signal is received. The latter is determined by distance and by the configured output power of the communicating devices.WEB, Towards Energy-Awareness in Managing Wireless LAN Applications,weblink IEEE/IFIP NOMS 2012: IEEE/IFIP Network Operations and Management Symposium, 2014-08-11, no,weblink" title="web.archive.org/web/20140813094612weblink">weblink 2014-08-13, WEB, Application Level Energy and Performance Measurements in a Wireless LAN,weblink The 2011 IEEE/ACM International Conference on Green Computing and Communications, 2014-08-11, no,weblink" title="web.archive.org/web/20140813113706weblink">weblink 2014-08-13, The same references apply to the attached graphs that show measurements of UDP throughput. Each represents an average (UDP) throughput (please note that the error bars are there, but barely visible due to the small variation) of 25 measurements. Each is with a specific packet size (small or large) and with a specific data rate (10 kbit/s – 100 Mbit/s). Markers for traffic profiles of common applications are included as well. These figures assume there are no packet errors, which if occurring will lower transmission rate further.

Channels and frequencies

{{See also|List of WLAN channels}}802.11b, 802.11g, and 802.11n-2.4 utilize the {{nowrap|2.400–2.500 GHz}} spectrum, one of the ISM bands. 802.11a, 802.11n and 802.11ac use the more heavily regulated {{nowrap|4.915–5.825 GHz}} band. These are commonly referred to as the "2.4 GHz and 5 GHz bands" in most sales literature. Each spectrum is sub-divided into channels with a center frequency and bandwidth, analogous to the way radio and TV broadcast bands are sub-divided.The 2.4 GHz band is divided into 14 channels spaced 5 MHz apart, beginning with channel 1, which is centered on 2.412 GHz. The latter channels have additional restrictions or are unavailable for use in some regulatory domains.File:2.4 GHz Wi-Fi channels (802.11b,g WLAN).svg|thumb|center|upright=3.25|Graphical representation of Wi-FiWi-FiThe channel numbering of the {{nowrap|5.725–5.875 GHz}} spectrum is less intuitive due to the differences in regulations between countries. These are discussed in greater detail on the list of WLAN channels.

Channel spacing within the 2.4 GHz band

In addition to specifying the channel center frequency, 802.11 also specifies (in Clause 17) a spectral mask defining the permitted power distribution across each channel. The mask requires the signal be attenuated a minimum of 20 dB from its peak amplitude at ±11 MHz from the centre frequency, the point at which a channel is effectively 22 MHz wide. One consequence is that stations can use only every fourth or fifth channel without overlap.Availability of channels is regulated by country, constrained in part by how each country allocates radio spectrum to various services. At one extreme, Japan permits the use of all 14 channels for 802.11b, and {{nowrap|1–13}} for 802.11g/n-2.4. Other countries such as Spain initially allowed only channels 10 and 11, and France allowed only 10, 11, 12, and 13; however, Europe now allow channels 1 through 13.WEB, Cuadro nacional de Atribución de Frecuencias CNAF, Secretaría de Estado de Telecomunicaciones,weblink 2008-03-05,weblink" title="web.archive.org/web/20080213092618weblink">weblink 2008-02-13, WEB, Evolution du régime d'autorisation pour les RLAN, French Telecommunications Regulation Authority (ART),weblink 2008-10-26, no,weblink" title="web.archive.org/web/20061209172043weblink">weblink 2006-12-09, North America and some Central and South American countries allow only {{nowrap|1 through 11.}}(File:2.4 GHz Wi-Fi channels (802.11g WLAN).svg|thumb|center|upright=3.25|Spectral masks for 802.11g channels {{nowrap|1–14}} in the 2.4 GHz band)Since the spectral mask defines only power output restrictions up to ±11 MHz from the center frequency to be attenuated by −50 dBr, it is often assumed that the energy of the channel extends no further than these limits. It is more correct to say that, given the separation between channels, the overlapping signal on any channel should be sufficiently attenuated to minimally interfere with a transmitter on any other channel. Due to the near-far problem a transmitter can impact (desense) a receiver on a "non-overlapping" channel, but only if it is close to the victim receiver (within a meter) or operating above allowed power levels. Conversely, a sufficiently distant transmitter on an overlapping channel can have little to no significant effect.Confusion often arises over the amount of channel separation required between transmitting devices. 802.11b was based on direct-sequence spread spectrum (DSSS) modulation and utilized a channel bandwidth of 22 MHz, resulting in three "non-overlapping" channels (1, 6, and 11). 802.11g was based on OFDM modulation and utilized a channel bandwidth of 20 MHz. This occasionally leads to the belief that four "non-overlapping" channels (1, 5, 9, and 13) exist under 802.11g, although this is not the case as per 17.4.6.3 Channel Numbering of operating channels of the IEEE Std 802.11 (2012), which states "In a multiple cell network topology, overlapping and/or adjacent cells using different channels can operate simultaneously without interference if the distance between the center frequencies is at least 25 MHz."WEB, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,weblink 2013-12-05, no,weblink" title="web.archive.org/web/20130626000833weblink">weblink 2013-06-26, and section 18.3.9.3 and Figure 18-13.This does not mean that the technical overlap of the channels recommends the non-use of overlapping channels. The amount of inter-channel interference seen on a configuration using channels 1, 5, 9, and 13 (which is permitted in Europe, but not in North America) is barely different from a three-channel configuration, but with an entire extra channel.WEB, Choosing the clearest channels for WiFi... continued,weblink 2013-12-05, no,weblink" title="web.archive.org/web/20131211080940weblink">weblink 2013-12-11, CONFERENCE, Garcia Villegas, E., Effect of adjacent-channel interference in IEEE 802.11 WLANs, CrownCom 2007, ICST & IEEE, 2007,weblink etal, no,weblink 2011-07-20, (File:NonOverlappingChannels2.4GHz802.11-en.svg|thumb|802.11 non-overlapping channels for 2.4GHz. Covers 802.11b,g,n)However, overlap between channels with more narrow spacing (e.g. 1, 4, 7, 11 in North America) may cause unacceptable degradation of signal quality and throughput, particularly when users transmit near the boundaries of AP cells.WEB, Channel Deployment Issues for 2.4 GHz 802.11 WLANs, Cisco Systems, Inc,weblink 2007-02-07, yes,weblink" title="web.archive.org/web/20140209230927weblink">weblink 2014-02-09,

Regulatory domains and legal compliance

IEEE uses the phrase regdomain to refer to a legal regulatory region. Different countries define different levels of allowable transmitter power, time that a channel can be occupied, and different available channels.IEEE Standard 802.11-2007 page 531 Domain codes are specified for the United States, Canada, ETSI (Europe), Spain, France, Japan, and China.Most Wi-Fi certified devices default to regdomain 0, which means least common denominator settings, i.e., the device will not transmit at a power above the allowable power in any nation, nor will it use frequencies that are not permitted in any nation.{{citation needed|date=November 2011}}The regdomain setting is often made difficult or impossible to change so that the end users do not conflict with local regulatory agencies such as the United States' Federal Communications Commission.

Layer 2 – Datagrams

The datagrams are called frames. Current 802.11 standards specify frame types for use in transmission of data as well as management and control of wireless links.Frames are divided into very specific and standardized sections. Each frame consists of a MAC header, payload, and frame check sequence (FCS). Some frames may not have a payload.(File:802.11 frame.png|alt=MAC Frame Format|center|frameless|974x974px|MAC Frame Format)The first two bytes of the MAC header form a frame control field specifying the form and function of the frame. This frame control field is subdivided into the following sub-fields:
  • Protocol Version: Two bits representing the protocol version. Currently used protocol version is zero. Other values are reserved for future use.
  • Type: Two bits identifying the type of WLAN frame. Control, Data, and Management are various frame types defined in IEEE 802.11.
  • Subtype: Four bits providing additional discrimination between frames. Type and Subtype are used together to identify the exact frame.
  • ToDS and FromDS: Each is one bit in size. They indicate whether a data frame is headed for a distribution system. Control and management frames set these values to zero. All the data frames will have one of these bits set. However communication within an independent basic service set (IBSS) network always set these bits to zero.
  • More Fragments: The More Fragments bit is set when a packet is divided into multiple frames for transmission. Every frame except the last frame of a packet will have this bit set.
  • Retry: Sometimes frames require retransmission, and for this there is a Retry bit that is set to one when a frame is resent. This aids in the elimination of duplicate frames.
  • Power Management: This bit indicates the power management state of the sender after the completion of a frame exchange. Access points are required to manage the connection, and will never set the power-saver bit.
  • More Data: The More Data bit is used to buffer frames received in a distributed system. The access point uses this bit to facilitate stations in power-saver mode. It indicates that at least one frame is available, and addresses all stations connected.
  • Protected Frame: The Protected Frame bit is set to one if the frame body is encrypted by a protection mechanism such as Wired Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA), or Wi-Fi Protected Access II (WPA2).
  • Order: This bit is set only when the "strict ordering" delivery method is employed. Frames and fragments are not always sent in order as it causes a transmission performance penalty.
The next two bytes are reserved for the Duration ID field. This field can take one of three forms: Duration, Contention-Free Period (CFP), and Association ID (AID).An 802.11 frame can have up to four address fields. Each field can carry a MAC address. Address 1 is the receiver, Address 2 is the transmitter, Address 3 is used for filtering purposes by the receiver.{{Dubious|date=December 2015}} Address 4 is only present in data frames transmitted between access points in an Extended Service Set or between intermediate nodes in a mesh network.The remaining fields of the header are:
  • The Sequence Control field is a two-byte section used for identifying message order as well as eliminating duplicate frames. The first 4 bits are used for the fragmentation number, and the last 12 bits are the sequence number.
  • An optional two-byte Quality of Service control field, present in QoS Data frames; it was added with 802.11e.
The payload or frame body field is variable in size, from 0 to 2304 bytes plus any overhead from security encapsulation, and contains information from higher layers.The Frame Check Sequence (FCS) is the last four bytes in the standard 802.11 frame. Often referred to as the Cyclic Redundancy Check (CRC), it allows for integrity check of retrieved frames. As frames are about to be sent, the FCS is calculated and appended. When a station receives a frame, it can calculate the FCS of the frame and compare it to the one received. If they match, it is assumed that the frame was not distorted during transmission.WEB,weblink 802.11 Technical Section,weblink" title="web.archive.org/web/20090124151617weblink">weblink 2009-01-24,

Management frames

Management frames are not always authenticated, and allow for the maintenance, or discontinuance, of communication. Some common 802.11 subtypes include:
  • Authentication frame: 802.11 authentication begins with the wireless network interface card (WNIC) sending an authentication frame to the access point containing its identity. With an open system authentication, the WNIC sends only a single authentication frame, and the access point responds with an authentication frame of its own indicating acceptance or rejection. With shared key authentication, after the WNIC sends its initial authentication request it will receive an authentication frame from the access point containing challenge text. The WNIC sends an authentication frame containing the encrypted version of the challenge text to the access point. The access point ensures the text was encrypted with the correct key by decrypting it with its own key. The result of this process determines the WNIC's authentication status.
  • Association request frame: Sent from a station it enables the access point to allocate resources and synchronize. The frame carries information about the WNIC, including supported data rates and the SSID of the network the station wishes to associate with. If the request is accepted, the access point reserves memory and establishes an association ID for the WNIC.
  • Association response frame: Sent from an access point to a station containing the acceptance or rejection to an association request. If it is an acceptance, the frame will contain information such an association ID and supported data rates.
  • Beacon frame: Sent periodically from an access point to announce its presence and provide the SSID, and other parameters for WNICs within range.
  • {{vanchor|Deauthentication frame}}: Sent from a station wishing to terminate connection from another station.
  • Disassociation frame: Sent from a station wishing to terminate connection. It's an elegant way to allow the access point to relinquish memory allocation and remove the WNIC from the association table.
  • Probe request frame: Sent from a station when it requires information from another station.
  • Probe response frame: Sent from an access point containing capability information, supported data rates, etc., after receiving a probe request frame.
  • Reassociation request frame: A WNIC sends a reassociation request when it drops from range of the currently associated access point and finds another access point with a stronger signal. The new access point coordinates the forwarding of any information that may still be contained in the buffer of the previous access point.
  • Reassociation response frame: Sent from an access point containing the acceptance or rejection to a WNIC reassociation request frame. The frame includes information required for association such as the association ID and supported data rates.
  • Action frame: extending management frame to control certain action. Some of action categories are Block Ack, Radio Measurement, Fast BSS Transition, etc. These frames are sent by a station when it needs to tell its peer for certain action to be taken. For example, a station can tell another station to set up a block acknowledgement by sending an ADDBA Request action frame. The other station would then respond with an ADDBA Response action frame.
The body of a management frame consists of frame-subtype-dependent fixed fields followed by a sequence of information elements (IEs).The common structure of an IE is as follows:
← 1 → ← 1 → ← 1-252 →
----------------------------
Length
------------------------

Control frames

Control frames facilitate in the exchange of data frames between stations. Some common 802.11 control frames include:
  • Acknowledgement (ACK) frame: After receiving a data frame, the receiving station will send an ACK frame to the sending station if no errors are found. If the sending station doesn't receive an ACK frame within a predetermined period of time, the sending station will resend the frame.
  • Request to Send (RTS) frame: The RTS and CTS frames provide an optional collision reduction scheme for access points with hidden stations. A station sends a RTS frame as the first step in a two-way handshake required before sending data frames.
  • Clear to Send (CTS) frame: A station responds to an RTS frame with a CTS frame. It provides clearance for the requesting station to send a data frame. The CTS provides collision control management by including a time value for which all other stations are to hold off transmission while the requesting station transmits.

Data frames

Data frames carry packets from web pages, files, etc. within the body.WEB,weblink Understanding 802.11 Frame Types, 2008-12-14, no,weblink" title="web.archive.org/web/20081125033409weblink">weblink 2008-11-25, The body begins with an IEEE 802.2 header, with the Destination Service Access Point (DSAP) specifying the protocol, followed by a Subnetwork Access Protocol (SNAP) header if the DSAP is hex AA, with the organizationally unique identifier (OUI) and protocol ID (PID) fields specifying the protocol. If the OUI is all zeroes, the protocol ID field is an EtherType value.WEB,weblinkweblink November 27, 2012, yes, Computer Networking : Principles, Protocols and Practice, Olivier, Bonaventure, 2012-07-09, Almost all 802.11 data frames use 802.2 and SNAP headers, and most use an OUI of 00:00:00 and an EtherType value.Similar to TCP congestion control on the internet, frame loss is built into the operation of 802.11. To select the correct transmission speed or Modulation and Coding Scheme, a rate control algorithm may test different speeds. The actual packet loss rate of an Access points vary widely for different link conditions. There are variations in the loss rate experienced on production Access points, between 10% and 80%, with 30% being a common average.JOURNAL, D Murray, T Koziniec, M Dixon, K. Lee, Measuring the reliability of 802.11 WiFi networks, Internet Technologies and Applications (ITA), 2015, It is important to be aware that the link layer should recover these lost frames. If the sender does not receive an Acknowledgement (ACK) frame, then it will be resent.

Standards and amendments

Within the IEEE 802.11 Working Group,WEB,weblink 2016-04-20, 2016-03-23, Official IEEE 802.11 working group project timelines, no,weblink" title="web.archive.org/web/20160407191026weblink">weblink 2016-04-07, the following IEEE Standards Association Standard and Amendments exist:
  • IEEE 802.11-1997: The WLAN standard was originally 1 Mbit/s and 2 Mbit/s, 2.4 GHz RF and infrared (IR) standard (1997), all the others listed below are Amendments to this standard, except for Recommended Practices 802.11F and 802.11T.
  • IEEE 802.11a: 54 Mbit/s, 5 GHz standard (1999, shipping products in 2001)
  • IEEE 802.11b: Enhancements to 802.11 to support 5.5 Mbit/s and 11 Mbit/s (1999)
  • IEEE 802.11c: Bridge operation procedures; included in the IEEE 802.1D standard (2001)
  • IEEE 802.11d: International (country-to-country) roaming extensions (2001)
  • IEEE 802.11e: Enhancements: QoS, including packet bursting (2005)
  • IEEE 802.11F: Inter-Access Point Protocol (2003) Withdrawn February 2006
  • IEEE 802.11g: 54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)
  • IEEE 802.11h: Spectrum Managed 802.11a (5 GHz) for European compatibility (2004)
  • IEEE 802.11i: Enhanced security (2004)
  • IEEE 802.11j: Extensions for Japan (4.9-5.0 GHz) (2004)
  • IEEE 802.11-2007: A new release of the standard that includes amendments a, b, d, e, g, h, i, and j. (July 2007)
  • IEEE 802.11k: Radio resource measurement enhancements (2008)
  • IEEE 802.11n: Higher-throughput improvements using MIMO (multiple-input, multiple-output antennas) (September 2009)
  • IEEE 802.11p: WAVE—Wireless Access for the Vehicular Environment (such as ambulances and passenger cars) (July 2010)
  • IEEE 802.11r: Fast BSS transition (FT) (2008)
  • IEEE 802.11s: Mesh Networking, Extended Service Set (ESS) (July 2011)
  • IEEE 802.11T: Wireless Performance Prediction (WPP)—test methods and metrics Recommendation cancelled
  • IEEE 802.11u: Improvements related to HotSpots and 3rd-party authorization of clients, e.g., cellular network offload (February 2011)
  • IEEE 802.11v: Wireless network management (February 2011)
  • IEEE 802.11w: Protected Management Frames (September 2009)
  • IEEE 802.11y: 3650–3700 MHz Operation in the U.S. (2008)
  • IEEE {{Visible anchor|802.11z}}: Extensions to Direct Link Setup (DLS) (September 2010)
  • IEEE 802.11-2012: A new release of the standard that includes amendments k, n, p, r, s, u, v, w, y, and z (March 2012)
  • IEEE 802.11aa: Robust streaming of Audio Video Transport Streams (June 2012)
  • IEEE 802.11ac: Very High Throughput
  • BOOK, IEEE-SA, IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 14 December 2016, 10.1109/IEEESTD.2016.7786995,weblink (2016 revision), 978-1-5044-3645-8,
  • BOOK, IEEE-SA, IEEE 802.11k-2008—Amendment 1: Radio Resource Measurement of Wireless LANs, 12 June 2008, 10.1109/IEEESTD.2008.4544755,weblink 978-0-7381-5420-6,
  • BOOK, IEEE-SA, IEEE 802.11r-2008—Amendment 2: Fast Basic Service Set (BSS) Transition, 15 July 2008, 10.1109/IEEESTD.2008.4573292,weblink 978-0-7381-5422-0,
  • BOOK, IEEE-SA, IEEE 802.11y-2008—Amendment 3: 3650–3700 MHz Operation in USA, 6 November 2008, 10.1109/IEEESTD.2008.4669928,weblink 978-0-7381-5765-8,

External links

{{IEEE standards|state=uncollapsed}}{{cdma}}


- content above as imported from Wikipedia
- "IEEE 802.11" does not exist on GetWiki (yet)
- time: 10:00am EDT - Mon, Jun 24 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
GETWIKI 18 AUG 2014
Wikinfo
Culture
CONNECT