SUPPORT THE WORK

GetWiki

Hertz

ARTICLE SUBJECTS
aesthetics  →
being  →
complexity  →
database  →
enterprise  →
ethics  →
fiction  →
history  →
internet  →
knowledge  →
language  →
licensing  →
linux  →
logic  →
method  →
news  →
perception  →
philosophy  →
policy  →
purpose  →
religion  →
science  →
sociology  →
software  →
truth  →
unix  →
wiki  →
ARTICLE TYPES
essay  →
feed  →
help  →
system  →
wiki  →
ARTICLE ORIGINS
critical  →
discussion  →
forked  →
imported  →
original  →
Hertz
[ temporary import ]
please note:
- the content below is remote from Wikipedia
- it has been imported raw for GetWiki
{{About|the unit measure|other uses}}{{redirect-multi|2|Hz|Megahertz}}{{Use dmy dates|date=May 2015}}







factoids
File:FrequencyAnimation.gif|thumb|upright=1.05|Top to bottom: Lights flashing at frequencies {{nowrap|f {{=}} 0.5 Hz}}, 1.0 Hz and 2.0 Hz, i.e. at 0.5, 1.0 and 2.0 flashes per second, respectively. The time between each flash – the period T â€“ is given by {{frac|1|f}} (the reciprocal of f{{px1}}), i.e. 2, 1 and 0.5 seconds, respectively.]]The hertz (symbol: Hz) is the derived unit of frequency in the International System of Units (SI) and is defined as one cycle per second."hertz". (1992). American Heritage Dictionary of the English Language (3rd ed.), Boston: Houghton Mifflin. It is named after Heinrich Rudolf Hertz, the first person to provide conclusive proof of the existence of electromagnetic waves. Hertz are commonly expressed in multiples: kilohertz (103 Hz, kHz), megahertz (106 Hz, MHz), gigahertz (109 Hz, GHz), terahertz (1012 Hz, THz), petahertz (1015 Hz, PHz), exahertz (1018 Hz, EHz),and zettahertz (1021 Hz, ZHz).Some of the unit's most common uses are in the description of sine waves and musical tones, particularly those used in radio- and audio-related applications. It is also used to describe the speeds at which computers and other electronics are driven. The units are often also used as a representation of Energy, via the photon energy equation, with one Hertz equivalent to h joules.

Definition

The hertz is defined as one cycle per second. The International Committee for Weights and Measures defined the second as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom" WEB
,weblink
, SI brochure: Table 3. Coherent derived units in the SI with special names and symbols
, International Bureau of Weights and Measures, BIPM
, WEB
,weblink
, [Resolutions of the] CIPM, 1964 – Atomic and molecular frequency standards
, SI brochure, Appendix 1
, International Bureau of Weights and Measures, BIPM
, and then adds: "It follows that the hyperfine splitting in the ground state of the caesium 133 atom is exactly 9 192 631 770 hertz, ν(hfs Cs) = 9 192 631 770 Hz." The dimension of the unit hertz is 1/time (1/T). Expressed in base SI units it is 1/second (1/s).In English, "hertz" is also used as the plural form.NIST Guide to SI Units – 9 Rules and Style Conventions for Spelling Unit Names, National Institute of Standards and Technology As an SI unit, Hz can be prefixed; commonly used multiples are kHz (kilohertz, 103 Hz), MHz (megahertz, 106 Hz), GHz (gigahertz, 109 Hz) and THz (terahertz, 1012 Hz). One hertz simply means "one cycle per second" (typically that which is being counted is a complete cycle); 100 Hz means "one hundred cycles per second", and so on. The unit may be applied to any periodic event—for example, a clock might be said to tick at 1 Hz, or a human heart might be said to beat at 1.2 Hz. The occurrence rate of aperiodic or stochastic events is expressed in reciprocal second or inverse second (1/s or s−1) in general or, in the specific case of radioactive decay, in becquerels."(d) The hertz is used only for periodic phenomena, and the becquerel (Bq) is used only for stochastic processes in activity referred to a radionuclide." WEB,weblink BIPM – Table 3, BIPM, 2012-10-24, Whereas 1 Hz is 1 cycle per second, 1 Bq is 1 aperiodic radionuclide event per second.Even though angular velocity, angular frequency and the unit hertz all have the dimension 1/s, angular velocity and angular frequency are not expressed in hertz,WEB
,weblink
, SI brochure, Section 2.2.2, paragraph 6
, International Bureau of Weights and Measures, BIPM
, yes
,weblink" title="web.archive.org/web/20091001192328weblink">weblink
, 1 October 2009
, dmy-all
, but rather in an appropriate angular unit such as radians per second. Thus a disc rotating at 60 revolutions per minute (rpm) is said to be rotating at either 2{{pi}} rad/s or 1 Hz, where the former measures the angular velocity and the latter reflects the number of complete revolutions per second. The conversion between a frequency f measured in hertz and an angular velocity ω measured in radians per second is
omega = 2pi f , and f = frac{omega}{2pi} ,.{{SI unit lowercase|Heinrich Hertz|hertz|Hz}}

History

The hertz is named after the German physicist Heinrich Hertz (1857–1894), who made important scientific contributions to the study of electromagnetism. The name was established by the International Electrotechnical Commission (IEC) in 1930.WEB,weblink IEC History, Iec.ch, 1904-09-15, 2012-04-28, It was adopted by the General Conference on Weights and Measures (CGPM) (Conférence générale des poids et mesures) in 1960, replacing the previous name for the unit, cycles per second (cps), along with its related multiples, primarily kilocycles per second (kc/s) and megacycles per second (Mc/s), and occasionally kilomegacycles per second (kMc/s). The term cycles per second was largely replaced by hertz by the 1970s. One hobby magazine, Electronics Illustrated, declared their intention to stick with the traditional kc., Mc., etc. units.CARTWRIGHT >FIRST=RUFUS TITLE=WILL SUCCESS SPOIL HEINRICH HERTZ? FORMAT=PDF MAGAZINE=ELECTRONICS ILLUSTRATED PUBLISHER=FAWCETT PUBLICATIONS, INC. EDITOR-FIRST=ROBERT G.,

Applications

File:Wave frequency.gif|thumb|upright=1.8|A sine JOURNAL, Rekdal, Ole Bjørn, 2014-08-01, Academic urban legends,weblink Social Studies of Science, 44, 4, 638–654, 10.1177/0306312714535679, 0306-3127, wave with varying frequency]]File:Wiggers Diagram.svg|thumb|upright=1.8|A heartbeat is an example of a non-sinusoidal periodic phenomenon that may be analyzed in terms of frequency. Two cycles are illustrated.]]

Vibration

Sound is a traveling longitudinal wave which is an oscillation of pressure. Humans perceive frequency of sound waves as pitch. Each musical note corresponds to a particular frequency which can be measured in hertz. An infant's ear is able to perceive frequencies ranging from 20 Hz to 20,000 Hz; the average adult human can hear sounds between 20 Hz and 16,000 Hz.WEB, Ernst Terhardt,weblink Dominant spectral region, Mmk.e-technik.tu-muenchen.de, 2000-02-20, 2012-04-28, yes,weblink" title="web.archive.org/web/20120426090422weblink">weblink 26 April 2012, dmy-all, The range of ultrasound, infrasound and other physical vibrations such as molecular and atomic vibrations extends from a few femtohertzWEB,weblink Black Hole Sound Waves - Science Mission Directorate, science.nasa.go, into the terahertz rangeAtomic vibrations are typically on the order of tens of terahertz and beyond.

{{anchor|Electricity}} Electromagnetic radiation

Electromagnetic radiation is often described by its frequency—the number of oscillations of the perpendicular electric and magnetic fields per second—expressed in hertz.Radio frequency radiation is usually measured in kilohertz (kHz), megahertz (MHz), or gigahertz (GHz). Light is electromagnetic radiation that is even higher in frequency, and has frequencies in the range of tens (infrared) to thousands (ultraviolet) of terahertz. Electromagnetic radiation with frequencies in the low terahertz range (intermediate between those of the highest normally usable radio frequencies and long-wave infrared light) is often called terahertz radiation. Even higher frequencies exist, such as that of gamma rays, which can be measured in exahertz (EHz). (For historical reasons, the frequencies of light and higher frequency electromagnetic radiation are more commonly specified in terms of their wavelengths or photon energies: for a more detailed treatment of this and the above frequency ranges, see electromagnetic spectrum.)

Computers

{{details|topic=why the frequency, including for gigahertz (GHz) etc., is a flawed speed indicator for computers|Megahertz myth}}In computers, most central processing units (CPU) are labeled in terms of their clock rate expressed in megahertz (106 Hz) or gigahertz (109 Hz). This specification refers to the frequency of the CPU's master clock signal. This signal is a square wave, which is an electrical voltage that switches between low and high logic values at regular intervals. As the hertz has become the primary unit of measurement accepted by the general populace to determine the performance of a CPU, many experts have criticized this approach, which they claim is an easily manipulable benchmark. Some processors use multiple clock periods to perform a single operation, while others can perform multiple operations in a single cycle.WEB, Amit, Asaravala,weblink Good Riddance, Gigahertz, Wired.com, 2004-03-30, 2012-04-28, For personal computers, CPU clock speeds have ranged from approximately 1 MHz in the late 1970s (Atari, Commodore, Apple computers) to up to 6 GHz in IBM POWER microprocessors.Various computer buses, such as the front-side bus connecting the CPU and northbridge, also operate at various frequencies in the megahertz range.

{{Visible anchor|SI multiples}}

{{SI multiples| symbol=Hz| unit=hertz| note=Common prefixed units are in bold face.M=106 sT=1012 s|| anchor=SI_prefixed_forms_of_hertz| right=}}Higher frequencies than the International System of Units provides prefixes for are believed to occur naturally in the frequencies of the quantum-mechanical vibrations of high-energy, or, equivalently, massive particles, although these are not directly observable and must be inferred from their interactions with other phenomena. By convention, these are typically not expressed in hertz, but in terms of the equivalent quantum energy, which is proportional to the frequency by the factor of Planck's constant.{| class="wikitable"! colspan="3" style="font-weight:bold;" |Hertz: Unicode characters.WEB,weblink May 24, 2019, The Unicode Standard 12.0 – CJK Compatibility ❰ Range: 3300—33FF ❱, Unicode Consortium, Unicode Consortium, 2019, Unicode.org, Symbol Name Unicode number| ㎐| Hertz (Square HZ)| U+3390| ㎑| Kilohertz (Square KHZ)| U+3391| ㎒| Megahertz (Square MHZ)| U+3392| ㎓| Gigahertz (Square GHZ)| U+3393| ㎔| Terahertz (Square THZ)| U+3394

See also

Notes and references

{{Reflist|30em}}

External links

{{SI units}}

- content above as imported from Wikipedia
- "Hertz" does not exist on GetWiki (yet)
- time: 1:34pm EDT - Thu, Jun 20 2019
[ this remote article is provided by Wikipedia ]
LATEST EDITS [ see all ]
GETWIKI 09 MAY 2016
GETWIKI 18 OCT 2015
M.R.M. Parrott
Biographies
GETWIKI 20 AUG 2014
GETWIKI 19 AUG 2014
GETWIKI 18 AUG 2014
Wikinfo
Culture
CONNECT